Muutke küpsiste eelistusi

E-raamat: Introduction to Hypergeometric, Supertrigonometric, and Superhyperbolic Functions

(Full Professor, China University of Mining and Technology, Xuzhou, China)
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 23-Jan-2021
  • Kirjastus: Academic Press Inc
  • Keel: eng
  • ISBN-13: 9780323852821
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 178,82 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 23-Jan-2021
  • Kirjastus: Academic Press Inc
  • Keel: eng
  • ISBN-13: 9780323852821
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

An Introduction to Hypergeometric, Supertigonometric, and Superhyperbolic Functions gives a basic introduction to the newly established hypergeometric, supertrigonometric, and superhyperbolic functions from the special functions viewpoint. The special functions, such as the Euler Gamma function, the Euler Beta function, the Clausen hypergeometric series, and the Gauss hypergeometric have been successfully applied to describe the real-world phenomena that involve complex behaviors arising in mathematics, physics, chemistry, and engineering.
  • Provides a historical overview for a family of the special polynomials
  • Presents a logical investigation of a family of the hypergeometric series
  • Proposes a new family of the hypergeometric supertrigonometric functions
  • Presents a new family of the hypergeometric superhyperbolic functions

Arvustused

"Publishers description: The book gives a basic introduction to the newly established hypergeometric, supertrigonometric, and superhyperbolic functions from the special functions viewpoint. The special functions, such as the Euler Gamma function, the Euler Beta function, the Clausen hypergeometric series, and the Gauss hypergeometric have been successfully applied to describe the real-world phenomena that involve complex behaviors arising in mathematics, physics, chemistry, and engineering." --zbMATH Open

Biography xi
Preface xiii
1 Euler Gamma Function, Pochhammer Symbols And Euler Betafunction
1(12)
1.1 Euler gamma function
1(5)
1.2 Pochhammer symbols
6(3)
1.3 Euler beta function
9(4)
2 Hypergeometric, Supertrigonometric, And Superhyperbolic Functions Via Clausen Hypergeometric Series
13(126)
2.1 Clausen hypergeometric series
13(36)
2.2 The hypergeometric supertrigonometric functions via Clausen hypergeometric series
49(24)
2.3 The hypergeometric superhyperbolic functions via Clausen hypergeometric series
73(24)
2.4 The special functions via Clausen hypergeometric series with three numerator parameters and two denominator parameters
97(18)
2.5 Analytic number theory via Clausen hypergeometric functions
115(24)
3 Hypergeometric Supertrigonometric And Superhyperbolic Functions Via Gauss Hypergeometric Series
139(98)
3.1 Gauss hypergeometric series
139(6)
3.2 Hypergeometric supertrigonometric functions via Gauss hypergeometric series
145(4)
3.3 Hypergeometric superhyperbolic functions via Gauss hypergeometric series
149(5)
3.4 Some elementary examples for the Gauss hypergeometric series
154(15)
3.5 Integral representations for the hypergeometric superhyperbolic and hypergeometric superhyperbolic functions
169(34)
3.6 Analytic number theory via Gauss hypergeometric functions
203(34)
4 Hypergeometric Supertrigonometric And Superhyperbolic Functions Via Kummer Confluent Hypergeometric Series
237(56)
4.1 The Kummer confluent hypergeometric series of first type
237(5)
4.2 The hypergeometric supertrigonometric functions via Kummer confluent hypergeometric series of first type
242(12)
4.3 The hypergeometric superhyperbolic functions via Kummer confluent hypergeometric series of first type
254(11)
4.4 The Kummer confluent hypergeometric series of second type
265(2)
4.5 The hypergeometric supertrigonometric functions via Kummer confluent hypergeometric series of second type
267(9)
4.6 The hypergeometric superhyperbolic functions via Kummer confluent hypergeometric series of second type
276(8)
4.7 Analytic number theory via Kummer confluent hypergeometric series
284(9)
5 Hypergeometric Supertrigonometric And Superhyperbolic Functions Via Jacobi Polynomials
293(52)
5.1 Jacobi polynomials
293(16)
5.2 Jacobi--Luke polynomials
309(3)
5.3 Jacobi--Luke-type polynomials
312(33)
6 Hypergeometric Supertrigonometric And Superhyperbolic Functions Via Laguerre Polynomials
345(100)
6.1 Laguerre polynomials
345(45)
6.2 Extended works containing the Laguerre polynomials
390(27)
6.3 Some results based on the special functions
417(28)
7 Hypergeometric Supertrigonometric And Superhyperbolic Functions Via Legendre Polynomials
445(26)
7.1 Legendre polynomials
445(11)
7.2 Legendre-type polynomials
456(15)
References 471(10)
Index 481
Dr. Xiao-Jun Yang is a full professor of China University of Mining and Technology, China. He was awarded the 2019 Obada-Prize, the Young Scientist Prize (Turkey), and Springer's Distinguished Researcher Award. His scientific interests include: Viscoelasticity, Mathematical Physics, Fractional Calculus and Applications, Fractals, Analytic Number Theory, and Special Functions. He has published over 160 journal articles and 4 monographs, 1 edited volume, and 10 chapters. He is currently an editor of several scientific journals, such as Fractals, Applied Numerical Mathematics, Mathematical Methods in the Applied Sciences, Mathematical Modelling and Analysis, Journal of Thermal Stresses, and Thermal Science, and an associate editor of Journal of Thermal Analysis and Calorimetry, Alexandria Engineering Journal, and IEEE Access.