Muutke küpsiste eelistusi

E-raamat: Introduction to Infinite-Dimensional Differential Geometry

(Nord Universitet, Norway)
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 67,91 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This text introduces foundational concepts in infinite-dimensional differential geometry beyond Banach manifolds, exploring modern applications. Emphasising connections to finite-dimensional geometry, it is accessible to graduate students, as well as researchers wishing to learn about the subject. Also available as Open Access on Cambridge Core.

Introducing foundational concepts in infinite-dimensional differential geometry beyond Banach manifolds, this text is based on Bastiani calculus. It focuses on two main areas of infinite-dimensional geometry: infinite-dimensional Lie groups and weak Riemannian geometry, exploring their connections to manifolds of (smooth) mappings. Topics covered include diffeomorphism groups, loop groups and Riemannian metrics for shape analysis. Numerous examples highlight both surprising connections between finite- and infinite-dimensional geometry, and challenges occurring solely in infinite dimensions. The geometric techniques developed are then showcased in modern applications of geometry such as geometric hydrodynamics, higher geometry in the guise of Lie groupoids, and rough path theory. With plentiful exercises, some with solutions, and worked examples, this will be indispensable for graduate students and researchers working at the intersection of functional analysis, non-linear differential equations and differential geometry. This title is also available as Open Access on Cambridge Core.

Muu info

Introduces foundational concepts in infinite-dimensional differential geometry beyond Banach manifolds, showcasing its modern applications.
1. Calculus in locally convex spaces;
2. Spaces and manifolds of smooth
maps;
3. Lifting geometry to mapping spaces I: Lie groups;
4. Lifting
geometry to mapping spaces II: (weak) Riemannian metrics;
5. Weak Riemannian
metrics with applications in shape analysis;
6. Connecting
finite-dimensional, infinite-dimensional and higher geometry;
7. EulerArnold
theory: PDE via geometry;
8. The geometry of rough paths; A. A primer on
topological vector spaces and locally convex spaces; B. Basic ideas from
topology; C. Canonical manifold of mappings; D. Vector fields and their Lie
bracket; E. Differential forms on infinite-dimensional manifolds; F.
Solutions to selected exercises; References; Index.
Alexander Schmeding is Associate Professor in Mathematics at Nord University at Levanger.