Muutke küpsiste eelistusi

E-raamat: Introduction To Inverse Problems In Physics, An

(Univ Of Alberta, Canada)
  • Formaat: 388 pages
  • Ilmumisaeg: 21-May-2020
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789811221682
  • Formaat - EPUB+DRM
  • Hind: 99,45 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 388 pages
  • Ilmumisaeg: 21-May-2020
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789811221682

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book is a compilation of different methods of formulating and solving inverse problems in physics from classical mechanics to the potentials and nucleus-nucleus scattering. Mathematical proofs are omitted since excellent monographs already exist dealing with these aspects of the inverse problems.The emphasis here is on finding numerical solutions to complicated equations. A detailed discussion is presented on the use of continued fractional expansion, its power and its limitation as applied to various physical problems. In particular, the inverse problem for discrete form of the wave equation is given a detailed exposition and applied to atomic and nuclear scattering, in the latter for elastic as well as inelastic collision. This technique is also used for inverse problem of geomagnetic induction and one-dimensional electrical conductivity. Among other topics covered are the inverse problem of torsional vibration, and also a chapter on the determination of the motion of a body with reflecting surface from its reflection coefficient.
Preface vii
Introduction 1(4)
1 Inverse Problems in Classical Dynamics
5(34)
1.1 Inverse Problem for Trajectory
5(1)
1.2 Determination of the Shape of the Potential Energy from the Period of Oscillation
6(2)
1.3 Action Equivalent Hamiltonians
8(2)
1.4 Abel's Original Inverse Problem
10(2)
1.5 Inverse Scattering Problem in Classical Mechanics
12(3)
1.6 Inverse Problem of a Linear Chain of Masses Coupled to Springs
15(7)
1.7 Direct Problem of Non-exponential and of Exponential Decays in a Linear Chain
22(2)
1.8 Inverse Problem of Dynamics for a Non-uniform Chain
24(3)
1.9 Direct and Inverse Problems of Analytical Dynamics
27(2)
1.10 From the Classical Equations of Motion to the Lagrangian and Hamiltonian Formulations
29(5)
1.11 Langevin and Fokker-Planck Equations
34(5)
2 Inverse Problems in Semiclassical Formulation of Quantum Mechanics
39(8)
2.1 Quantum Mechanical Bound States for Confining Potentials
39(2)
2.2 Semiclassical Formulation of the Inverse Scattering Problem
41(6)
3 Inverse Problems and the Heisenberg Equations of Motion
47(8)
3.1 Equations of Motion Derived from the Hamiltonian Operator
48(1)
3.2 Determination of the Commutation Relations From the Equations of Motion
49(3)
3.3 Construction of the Hamiltonian Operator as an Inverse Problem
52(3)
4 Inverse Scattering Problem for the Schrodinger Equation and the Gel'fand---Levitan Formulation
55(28)
4.1 The Jost Solution
56(2)
4.2 The Jost Function
58(3)
4.3 The Levinson Theorem
61(2)
4.4 The Gel'fand-Levitan Equation
63(5)
4.5 Inverse Problem for One-dimensional Schrodinger Equation
68(5)
4.6 Bargmann Potentials
73(4)
4.7 The Jost and Kohn Method of Inversion
77(6)
5 Marchenko's Formulation of the Inverse Scattering Problem
83(32)
5.1 Mathematical Preliminaries
83(8)
5.2 Bound States Embedded in Continuum
91(1)
5.3 More Solvable Potentials Found from Inverse Scattering
92(4)
5.4 The Inverse Problem for Reflection and Transmission from a Barrier
96(2)
5.5 A Special Problem in Electromagnetic Inverse Scattering
98(6)
5.6 Construction of Reflectionless Potentials
104(4)
5.7 Symmetric Reflectionless Potentials Supporting a Given Set of Bound States
108(7)
6 Newton-Sabatier Approach to the Inverse Problem at Fixed Energy
115(38)
6.1 Construction of the Potential at Fixed Energy
115(6)
6.2 Criticism of the Newton-Sabatier Method of Inversion at a Fixed Energy
121(2)
6.3 On the Results of the Numerical Solution of Inverse Problems
123(1)
6.4 Modified Form of the Gel'fand-Levitan for Fixed Energy Problems and the Langer Transform
124(6)
6.5 Lipperheide and Fiedeldey Approach to the Inverse Problem at Fixed Energy
130(6)
6.6 Completeness of the Set of Jost Solutions /(A, k, r)
136(5)
6.7 Generalized Gel'fand-Levitan Approach to Inversion
141(4)
6.8 The Method of Schnizer and Leeb
145(2)
6.9 Analysis of Atom-Atom Scattering Using Complex Angular Momentum Formulation
147(6)
7 Discrete Forms of the Schrodinger Equation and the Inverse Problem
153(20)
7.1 Zakhariev's Method
154(1)
7.2 The Method of Case and Kac for Discrete Form of Inverse Scattering Problem
155(8)
7.3 Discrete Form of the Spectral Density for Solving the Inverse Problem on Semi-axis 0 ≥ r > ∞
163(10)
8 R Matrix Theory and Inverse Problems
173(14)
8.1 Inverse Problem for R Matrix Formulation of Scattering
178(1)
8.2 The Finite-difference Analogue of the R Matrix Theory of Scattering
179(3)
8.3 Shell-model Hamiltonian in Tri-diagonal Form
182(1)
8.4 Continued Fraction Expansion of the R Matrix
183(4)
9 Solvable Models of Fokker-Planck Equation Obtained Using the Gel'fand-Levitan Method
187(8)
9.1 Solution of the Fokker-Planck Equation for Symmetric and Asymmetric Double-Well Potentials
191(4)
10 The Eikonal Approximation
195(12)
10.1 Finding the Impact Parameter Phase Shifts from the Cross Section
201(6)
11 Inverse Methods Applied to Study Symmetries and Conservation Laws
207(10)
11.1 Classical Degeneracy and Its Quantum Counterpart
208(1)
11.2 Inverse Problem for Angular Momentum Eigenvalues
209(4)
11.3 Quantum Potentials Proportional to h
213(4)
12 Inverse Problems in Quantum Tunneling
217(24)
12.1 Nonlinear Equation for Variable Reflection Amplitude
217(2)
12.2 Inverse One-dimensional Tunneling Problem
219(3)
12.3 A Method for Finding the Potential from the Reflection Amplitude
222(2)
12.4 Finding the Shape of the Potential Barrier in One-Dimensional Tunneling
224(4)
12.5 Construction of a Symmetric Double-Well Potential from the Known Energy Eigenvalues
228(2)
12.6 The Inverse Problem of Molecular Spectra
230(3)
12.7 The Inverse Problem of Tunneling for Gamow States
233(3)
12.8 Inverse Problem of Survival Probability
236(5)
13 Inverse Problems Related to the Classical Wave Propagation
241(44)
13.1 Determination of the Wave Velocity in an Inhomogeneous Medium from the Reflection Coefficient
241(5)
13.2 Solvable Examples
246(2)
13.3 Extension of the Inverse Method to Reflection from a Layered Medium where the Asymptotic Values of c(t) at t → ∞ are Different
248(6)
13.4 Direct and Inverse Problems of Wave Propagation Using Travel Time Coordinate
254(8)
13.5 R Matrix and the Inverse Problems of Wave Propagation
262(3)
13.6 Inverse Problem for Acoustic Waves: Determination of the Wave Velocity and Density Profiles
265(1)
13.7 Inversion of Travel Time Data in the Geometrical Acoustic Limit
265(2)
13.8 Riccati Equation for Solving the Direct Problem for Variable Velocity and Density
267(1)
13.9 Finite Difference Equation for Acoustic Pressure in an Inhomogeneous Medium: Direct and Inverse Problems
268(2)
13.10 Determination of the Wave Velocity and the Density of the Medium
270(1)
13.11 Rational Representation of the Input Data
271(1)
13.12 Direct and Inverse Methods Based on Continued Fraction Expansion Applied to Two Simple Models
271(3)
13.13 Inverse Problem of Wave Propagation Using Schwinger's Approximation
274(11)
14 The Inverse Problem of Torsional Vibration
285(8)
15 Local Nucleon-Nucleon Potentials Found from the Inverse Scattering Problem at Fixed Energy
293(24)
15.1 Constructing the S Matrix from Empirical Data
294(5)
15.2 A Method for the Numerical Calculation of the Local Potential Using the Gel'fand-Levitan Formulation
299(3)
15.3 Direct and Inverse Problems for Nucleon-Nucleon Scattering Using Continued Fraction Formulation
302(3)
15.4 Inverse Problem of Scattering in the Presence of the Tensor Force
305(4)
15.5 Potential Model for Generating the Input Data for Testing the Inversion Method
309(3)
15.6 Inverse Method of Nucleon-Nucleon Phase Shift and the Calculation of Nuclear Structure
312(5)
16 The Inverse Problem of Nucleon-Nucleus Scattering
317(16)
16.1 Solving the Inverse Nucleon-Nucleus Problem
320(4)
16.2 Inverse Scattering Theory Incorporating Both Coulomb and Nuclear Forces
324(3)
16.3 Inverse Scattering Method for Two Identical Nuclei at Fixed Energy
327(6)
17 Two Inverse Problems of Electrical Conductivity in Geophysics
333(16)
17.1 Inverse Problem of Electrical Conductivity in One-Dimension
333(6)
17.2 The Inverse Problem of Geomagnetic Induction at a Fixed Frequency
339(10)
18 Determination of the Mass Density Distribution Inside or on the Surface of a Body from the Measurement of the External Potential
349(6)
19 The Inverse Problem of Reflection from a Moving Object
355(16)
A Expansion Algorithm for Continued J-fractions
361(6)
B Reciprocal Differences of a Quotient and Thiele's Theorem
367(4)
Index 371