Muutke küpsiste eelistusi

E-raamat: Introduction to Medical Imaging: Physics, Engineering and Clinical Applications

, (Pennsylvania State University)
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 74,09 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"Covering the basics of X-rays, CT, PET, nuclear medicine, ultrasound and MRI, this textbook provides senior undergraduate and beginning graduate students with a broad introduction to medical imaging. Over 130 end-of-chapter exercises are included, in addition to solved example problems, which enable students to master the theory as well as providing them with the tools needed to solve more difficult problems. The basic theory, instrumentation and state-of-the-art techniques and applications are covered,bringing students immediately up to date with recent developments, such as combined computed tomography/positron emission tomography, multi-slice CT, four-dimensional ultrasound and parallel imaging MR technology. Clinical examples provide practical applications of physics and engineering knowledge to medicine. Finally, helpful references to specialized texts, recent review articles and relevant scientific journals are provided at the end of each chapter, making this an ideal textbook for a one-semester course in medical imaging"--Provided by publisher.

Arvustused

'This is an excellently prepared textbook for a senior/first year graduate level course. It explains physical concepts in an easily understandable manner. In addition, a problem set is included after each chapter. Very few books on the market today have this choice. I would definitely use it for teaching a medical imaging class at USC.' K. Kirk Shung, University of Southern California 'I have anxiously anticipated the release of this book and will use it with both students and trainees.' Michael B. Smith, Novartis Institutes for Biomedical Research 'An excellent and approachable text for both undergraduate and graduate students.' Richard Magin, University of Illinois at Chicago 'Introduction to Medical Imaging is a nice introduction textbook for courses on biomedical imaging, especially for clinical applications.' Guiren Wang, University of South Carolina

Muu info

Covers the basics of medical imaging together with state-of-the-art concepts and theory, relevant clinical applications, and future prospects.
1 General image characteristics, data acquisition and image reconstruction
1(33)
1.1 Introduction
1(1)
1.2 Specificity, sensitivity and the receiver operating characteristic (ROC) curve
2(3)
1.3 Spatial resolution
5(5)
1.3.1 Spatial frequencies
5(1)
1.3.2 The line spread function
6(1)
1.3.3 The point spread function
7(1)
1.3.4 The modulation transfer function
8(2)
1.4 Signal-to-noise ratio
10(2)
1.5 Contrast-to-noise ratio
12(1)
1.6 Image filtering
12(3)
1.7 Data acquisition: analogue-to-digital converters
15(5)
1.7.1 Dynamic range and resolution
16(2)
1.7.2 Sampling frequency and bandwidth
18(1)
1.7.3 Digital oversampling
19(1)
1.8 Image artifacts
20(1)
1.9 Fourier transforms
20(4)
1.9.1 Fourier transformation of time- and spatial frequency-domain signals
21(1)
1.9.2 Useful properties of the Fourier transform
22(2)
1.10 Backprojection, sinograms and filtered backprojection
24(6)
1.10.1 Backprojection
26(1)
1.10.2 Sinograms
27(1)
1.10.3 Filtered backprojection
27(3)
Exercises
30(4)
2 X-ray planar radiography and computed tomography
34(55)
2.1 Introduction
34(2)
2.2 The X-ray tube
36(4)
2.3 The X-ray energy spectrum
40(2)
2.4 Interactions of X-rays with the body
42(3)
2.4.1 Photoelectric attenuation
42(1)
2.4.2 Compton scattering
43(2)
2.5 X-ray linear and mass attenuation coefficients
45(2)
2.6 Instrumentation for planar radiography
47(3)
2.6.1 Collimators
48(1)
2.6.2 Anti-scatter grids
48(2)
2.7 X-ray detectors
50(4)
2.7.1 Computed radiography
50(2)
2.7.2 Digital radiography
52(2)
2.8 Quantitative characteristics of planar X-ray images
54(5)
2.8.1 Signal-to-noise
54(3)
2.8.2 Spatial resolution
57(1)
2.8.3 Contrast-to-noise
58(1)
29 X-ray contrast agents
59(2)
2.9.1 Contrast agents for the GI tract
59(1)
2.9.2 Iodine-based contrast agents
60(1)
2.10 Specialized X-ray imaging techniques
61(3)
2.10.1 Digital subtraction angiography
61(1)
2.10.2 Digital mammography
62(1)
2.10.3 Digital fluoroscopy
63(1)
2.11 Clinical applications of planar X-ray imaging
64(2)
2.12 Computed tomography
66(2)
2.12.1 Spiral/helical CT
67(1)
2.12.2 Multi-slice spiral CT
68(1)
2.13 Instrumentation for CT
68(3)
2.13.1 Instrumentation development for helical CT
69(1)
2.13.2 Detectors for multi-slice CT
70(1)
2.14 Image reconstruction in CT
71(4)
2.14.1 Filtered backprojection techniques
71(2)
2.14.2 Fan beam reconstructions
73(1)
2.14.3 Reconstruction of helical CT data
73(1)
2.14.4 Reconstruction of multi-slice helical CT scans
74(1)
2.14.5 Pre-processing data corrections
74(1)
2.15 Dual-source and dual-energy CT
75(1)
2.16 Digital X-ray tomosynthesis
76(1)
2.17 Radiation dose
77(3)
2.18 Clinical applications of CT
80(3)
2.18.1 Cerebral scans
80(1)
2.18.2 Pulmonary disease
81(1)
2.18.3 Liver imaging
81(1)
2.18.4 Cardiac imaging
82(1)
Exercises
83(6)
3 Nuclear medicine: Planar scintigraphy, SPECT and PET/CT
89(56)
3.1 Introduction
89(2)
3.2 Radioactivity and radiotracer half-life
91(1)
3.3 Properties of radiotracers for nuclear medicine
92(1)
3.4 The technetium generator
93(3)
3.5 The distribution of technetium-based radiotracers within the body
96(1)
3.6 The gamma camera
97(11)
3.6.1 The collimator
97(3)
3.6.2 The detector scintillation crystal and coupled photomultiplier tubes
100(3)
3.6.3 The Anger position network and pulse height analyzer
103(3)
3.6.4 Instrumental dead time
106(2)
3.7 Image characteristics
108(1)
3.8 Clinical applications of planar scintigraphy
109(1)
3.9 Single photon emission computed tomography (SPECT)
110(2)
3.10 Data processing in SPECT
112(4)
3.10.1 Scatter correction
112(2)
3.10.2 Attenuation correction
114(1)
3.10.3 Image reconstruction
115(1)
3.11 SPECT/CT
116(1)
3.12 Clinical applications of SPECT and SPECT/CT
117(4)
3.12.1 Myocardial perfusion
117(3)
3.12.2 Brain SPECT and SPECT/CT
120(1)
3.13 Positron emission tomography (PET)
121(2)
3.14 Radiotracers used for PET/CT
123(1)
3.15 Instrumentation for PET/CT
124(5)
3.15.1 Scintillation crystals
125(2)
3.15.2 Photomultiplier tubes and pulse height analyzer
127(1)
3.15.3 Annihilation coincidence detection
127(2)
3.16 Two-dimensional and three-dimensional PET imaging
129(1)
3.17 PET/CT
130(1)
3.18 Data processing in PET/CT
131(3)
3.18.1 Attenuation correction
131(1)
3.18.2 Corrections for accidental and multiple coincidences
131(2)
3.18.3 Corrections for scattered coincidences
133(1)
3.18.4 Corrections for dead time
134(1)
3.19 Image characteristics
134(1)
3.20 Time-of-flight PET
135(2)
3.21 Clinical applications of PET/CT
137(2)
3.21.1 Whole-body PET/CT scanning
137(1)
3.21.2 PET/CT applications in the brain
137(2)
3.21.3 Cardiac PET/CT studies
139(1)
Exercises
139(6)
4 Ultrasound imaging
145(59)
4.1 Introduction
145(1)
4.2 Wave propagation and characteristic acoustic impedance
146(3)
4.3 Wave reflection, refraction and scattering in tissue
149(4)
4.3.1 Reflection, transmission and refraction at tissue boundaries
149(3)
4.3.2 Scattering by small structures
152(1)
4.4 Absorption and total attenuation of ultrasound energy in tissue
153(3)
4.4.1 Relaxation and classical absorption
154(1)
4.4.2 Attenuation coefficients
155(1)
4.5 Instrumentation
156(1)
4.6 Single element ultrasound transducers
157(8)
4.6.1 Transducer bandwidth
159(2)
4.6.2 Beam geometry and lateral resolution
161(2)
4.6.3 Axial resolution
163(1)
4.6.4 Transducer focusing
163(2)
4.7 Transducer arrays
165(10)
4.7.1 Linear arrays
166(1)
4.7.2 Phased arrays
167(1)
4.7.3 Beam-forming and steering via pulse transmission for phased arrays
168(3)
4.7.4 Analogue and digital receiver beam-forming for phased arrays
171(1)
4.7.5 Time-gain compensation
172(1)
4.7.6 Multi-dimensional arrays
173(1)
4.7.7 Annular arrays
174(1)
4.8 Clinical diagnostic scanning modes
175(3)
4.8.1 A-mode scanning: ophthalmic pachymetry
175(1)
4.8.2 M-mode echocardiography
175(1)
4.8.3 Two-dimensional B-mode scanning
176(1)
4.8.4 Compound scanning
177(1)
4.9 Image characteristics
178(1)
4.9.1 Signal-to-noise
178(1)
4.9.2 Spatial resolution
178(1)
4.9.3 Contrast-to-noise
179(1)
4.10 Doppler ultrasound for blood flow measurements
179(8)
4.10.1 Pulsed wave Doppler measurements
181(1)
4.10.2 Duplex and triplex image acquisition
182(2)
4.10.3 Aliasing in pulsed wave Doppler imaging
184(2)
4.10.4 Power Doppler
186(1)
4.10.5 Continuous-wave Doppler measurements
186(1)
4.11 Ultrasound contrast agents
187(4)
4.11.1 Microbubbles
187(3)
4.11.2 Harmonic and pulse inversion imaging
190(1)
4.12 Safety guidelines in ultrasound imaging
191(2)
4.13 Clinical applications of ultrasound
193(3)
4.13.1 Obstetrics and gynaecology
193(1)
4.13.2 Breast imaging
194(1)
4.13.3 Musculoskeletal structure
194(1)
4.13.4 Echocardiography
195(1)
4.14 Artifacts in ultrasound imaging
196(1)
Exercises
197(7)
5 Magnetic resonance imaging (MRI)
204(79)
5.1 Introduction
204(1)
5.2 Effects of a strong magnetic field on protons in the body
205(6)
5.2.1 Proton energy levels
206(3)
5.2.2 Classical precession
209(2)
5.3 Effects of a radiofrequency pulse on magnetization
211(2)
5.3.1 Creation of transverse magnetization
212(1)
5.4 Faraday induction: the basis of MR signal detection
213(2)
5.4.1 MR signal intensity
214(1)
5.4.2 The rotating reference frame
214(1)
5.5 T1 and T2 relaxation times
215(4)
5.6 Signals from lipid
219(1)
5.7 The free induction decay
220(1)
5.8 Magnetic resonance imaging
221(2)
5.9 Image acquisition
223(6)
5.9.1 Slice selection
223(3)
5.9.2 Phase encoding
226(2)
5.9.3 Frequency encoding
228(1)
5.10 The k-space formalism and image reconstruction
229(2)
5.11 Multiple-slice imaging
231(2)
5.12 Basic imaging sequences
233(6)
5.12.1 Multi-slice gradient echo sequences
233(1)
5.12.2 Spin echo sequences
234(3)
5.12.3 Three-dimensional imaging sequences
237(2)
5.13 Tissue relaxation times
239(2)
5.14 MRI instrumentation
241(11)
5.14.1 Superconducting magnet design
241(3)
5.14.2 Magnetic field gradient coils
244(3)
5.14.3 Radiofrequency coils
247(3)
5.14.4 Receiver design
250(2)
5.15 Parallel imaging using coil arrays
252(2)
5.16 Fast imaging sequences
254(3)
5.16.1 Echo planar imaging
255(1)
5.16.2 Turbo spin echo sequences
256(1)
5.17 Magnetic resonance angiography
257(2)
5.18 Functional MRI
259(2)
5.19 MRI contrast agents
261(3)
5.19.1 Positive contrast agents
261(2)
5.19.2 Negative contrast agents
263(1)
5.20 Image characteristics
264(3)
5.20.1 Signal-to-noise
264(1)
5.20.2 Spatial resolution
265(1)
5.20.3 Contrast-to-noise
266(1)
5.21 Safety considerations - specific absorption rate (SAR)
267(1)
5.22 Lipid suppression techniques
267(1)
5.23 Clinical applications
268(5)
5.23.1 Neurological applications
268(1)
5.23.2 Body applications
269(1)
5.23.3 Musculoskeletal applications
270(1)
5.23.4 Cardiology applications
271(2)
Exercises
273(10)
Index 283
Andrew Webb is Professor of Radiology at the Leiden University Medical Center, and Director of the C. J. Gorter High Field Magnetic Resonance Imaging Center. He is a Senior Member of the IEEE, and a Fellow of the American Institute of Medical and Biological Engineering. His research involves many areas of high field magnetic resonance imaging and has resulted in more than 160 journal articles and five patents. He has taught medical imaging classes for both graduates and undergraduates both nationally and internationally for the past fifteen years. Nadine Smith is a faculty member in the Bioengineering Department and the Graduate Program in Acoustics at Pennsylvania State University. She also holds a visiting faculty position at the Leiden University Medical Center. She is a Senior Member of the IEEE, and of the American Institute of Ultrasound in Medicine where she is on both the Bioeffects and Technical Standards Committees. Her current research involves ultrasound transducer design, ultrasound imaging and therapeutic applications of ultrasound.