|
|
|
|
3 | (32) |
|
1.1 Quotients of Complex Numbers |
|
|
7 | (1) |
|
1.2 Roots of Complex Numbers |
|
|
8 | (1) |
|
1.3 Sequences and Euler's Constant |
|
|
9 | (4) |
|
1.4 Power Series and Radius of Convergence |
|
|
13 | (4) |
|
|
17 | (7) |
|
|
20 | (4) |
|
1.6 The Logarithm and Winding Number |
|
|
24 | (1) |
|
1.7 Branch Cuts for log Z |
|
|
25 | (2) |
|
|
27 | (2) |
|
|
29 | (6) |
|
|
33 | (2) |
|
2 Complex Function Theory |
|
|
35 | (26) |
|
|
35 | (3) |
|
2.2 Cauchy's Integral Formula |
|
|
38 | (4) |
|
2.3 Evaluation of a Real Integral |
|
|
42 | (1) |
|
|
43 | (5) |
|
|
48 | (2) |
|
|
50 | (1) |
|
|
51 | (1) |
|
|
52 | (3) |
|
2.9 Examples of Potential Flows |
|
|
55 | (1) |
|
|
56 | (5) |
|
|
60 | (1) |
|
3 Vectors and Linear Algebra |
|
|
61 | (48) |
|
|
61 | (2) |
|
3.2 Inner and Outer Products |
|
|
63 | (1) |
|
3.3 Angular Momentum Vector |
|
|
63 | (11) |
|
|
64 | (1) |
|
3.3.2 Angular Momentum and Mach's Principle |
|
|
65 | (1) |
|
|
66 | (4) |
|
|
70 | (1) |
|
|
71 | (3) |
|
3.4 Elementary Transformations in the Plane |
|
|
74 | (3) |
|
|
74 | (2) |
|
|
76 | (1) |
|
|
77 | (1) |
|
|
78 | (5) |
|
3.6.1 Eigenvalues of R(φ) |
|
|
78 | (1) |
|
3.6.2 Eigenvalues of a Real-Symmetric Matrix |
|
|
79 | (1) |
|
|
80 | (3) |
|
3.7 Unitary Matrices and Invariants |
|
|
83 | (3) |
|
3.8 Hermitian Structure of Minkowski Spacetime |
|
|
86 | (5) |
|
3.9 Eigenvectors of Hermitian Matrices |
|
|
91 | (3) |
|
|
94 | (7) |
|
3.10.1 Examples of Image and Null Space |
|
|
96 | (1) |
|
3.10.2 Dimensions of Image and Null Space |
|
|
97 | (3) |
|
3.10.3 QR Factorization by Gram-Schmidt |
|
|
100 | (1) |
|
|
101 | (8) |
|
|
107 | (2) |
|
4 Linear Partial Differential Equations |
|
|
109 | (26) |
|
|
109 | (6) |
|
4.1.1 Inhomogeneous Wave Equation (Duhamel) |
|
|
113 | (2) |
|
|
115 | (7) |
|
4.2.1 Photon Diffusion in the Sun |
|
|
121 | (1) |
|
|
122 | (3) |
|
4.4 Characteristics of Hyperbolic Systems |
|
|
125 | (1) |
|
|
126 | (3) |
|
|
129 | (6) |
|
|
131 | (4) |
|
Part II Methods of Approximation |
|
|
|
5 Projections and Minimal Distances |
|
|
135 | (24) |
|
5.1 Vectors and Distances |
|
|
135 | (2) |
|
5.2 Projections of Vectors |
|
|
137 | (5) |
|
5.3 Snell's Law and Fermat's Principle |
|
|
142 | (6) |
|
5.4 Fitting Data by Least Squares |
|
|
148 | (3) |
|
5.5 Gauss-Legendre Quadrature |
|
|
151 | (3) |
|
|
154 | (5) |
|
|
158 | (1) |
|
6 Spectral Methods and Signal Analysis |
|
|
159 | (38) |
|
|
159 | (1) |
|
6.2 Expansion in Legendre Polynomials |
|
|
160 | (7) |
|
6.2.1 Symbolic Computation in Maxima |
|
|
163 | (4) |
|
|
167 | (1) |
|
6.4 The Fourier Transform |
|
|
167 | (9) |
|
|
169 | (1) |
|
6.4.2 Plancherel's Theorem |
|
|
170 | (1) |
|
6.4.3 Fourier Series by Sampling ƒ(ω) |
|
|
171 | (3) |
|
6.4.4 Discrete Fourier Transform (DFT) |
|
|
174 | (2) |
|
|
176 | (1) |
|
6.6 Chebyshev Polynomials |
|
|
177 | (2) |
|
6.7 Weierstrass Approximation Theorem |
|
|
179 | (1) |
|
6.8 Detector Signals in the Presence of Noise |
|
|
180 | (3) |
|
6.8.1 Convolution and Cross-Correlation |
|
|
181 | (2) |
|
6.9 Signal Detection by FFT Using Maxima |
|
|
183 | (2) |
|
6.10 CPU-Butterfly Filter in (ƒ, ƒ) |
|
|
185 | (5) |
|
|
190 | (7) |
|
|
196 | (1) |
|
|
197 | (16) |
|
|
197 | (3) |
|
7.2 Convergence in Newton's Method |
|
|
200 | (1) |
|
|
201 | (3) |
|
7.4 Newton's Method in Two Dimensions |
|
|
204 | (2) |
|
|
206 | (2) |
|
7.6 Root Finding in Higher Dimensions |
|
|
208 | (2) |
|
|
210 | (3) |
|
|
211 | (2) |
|
8 Finite Differencing: Differentiation and Integration |
|
|
213 | (30) |
|
|
213 | (7) |
|
8.1.1 Estimating Velocity |
|
|
215 | (4) |
|
8.1.2 Estimating Acceleration |
|
|
219 | (1) |
|
|
220 | (1) |
|
8.3 Integration by Finite Summation |
|
|
221 | (2) |
|
8.4 Numerical Integration of ODE's |
|
|
223 | (2) |
|
8.5 Examples of Ordinary Differential Equations |
|
|
225 | (11) |
|
|
225 | (1) |
|
8.5.2 Migration Time of the Moon |
|
|
226 | (6) |
|
8.5.3 Cosmological Expansion |
|
|
232 | (4) |
|
|
236 | (7) |
|
|
241 | (2) |
|
9 Perturbation Theory, Scaling and Turbulence |
|
|
243 | (30) |
|
9.1 Roots of a Cubic Equation |
|
|
243 | (2) |
|
|
245 | (2) |
|
|
247 | (5) |
|
9.3.1 Perihelion Precession |
|
|
249 | (3) |
|
9.4 Inertial and Viscous Fluid Motion |
|
|
252 | (11) |
|
9.4.1 Large and Small Reynolds Numbers |
|
|
255 | (3) |
|
|
258 | (1) |
|
9.4.3 Jeans Instability in Linearized Euler's Equations |
|
|
259 | (4) |
|
9.5 Kolmogorov Scaling of Homogeneous Turbulence |
|
|
263 | (3) |
|
|
266 | (7) |
|
|
269 | (4) |
|
|
|
10 Thermodynamics of N-body Systems |
|
|
273 | (18) |
|
10.1 The Action Principle |
|
|
273 | (2) |
|
10.2 Momentum in Euler-Lagrange Equations |
|
|
275 | (1) |
|
10.3 Legendre Transformation |
|
|
276 | (1) |
|
10.4 Hamiltonian Formulation |
|
|
277 | (1) |
|
|
278 | (7) |
|
10.6 Coefficients of Relaxation |
|
|
285 | (2) |
|
|
287 | (4) |
|
|
288 | (3) |
|
11 Accretion Flows onto Black Holes |
|
|
291 | (26) |
|
|
293 | (5) |
|
11.2 Hoyle-Lyttleton Accretion |
|
|
298 | (3) |
|
|
301 | (3) |
|
11.4 Gravitational Wave Emission |
|
|
304 | (3) |
|
11.5 Mass Transfer in Binaries |
|
|
307 | (5) |
|
|
312 | (5) |
|
|
314 | (3) |
|
12 Rindler Observers in Astrophysics and Cosmology |
|
|
317 | (8) |
|
12.1 The Moving Mirror Problem |
|
|
317 | (2) |
|
12.2 Implications for Dark Matter |
|
|
319 | (4) |
|
|
323 | (2) |
|
|
324 | (1) |
Appendix A Some Units and Constants |
|
325 | (2) |
Appendix B Γ(z) and σ(z) Functions |
|
327 | (2) |
Appendix C Free Fall in Schwarzschild Spacetime |
|
329 | (10) |
Index |
|
339 | |