Muutke küpsiste eelistusi

E-raamat: Introduction to Model Theory

  • Formaat - PDF+DRM
  • Hind: 100,09 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Model theory investigates mathematical structures by means of formal languages. So-called first-order languages have proved particularly useful in this respect.

This text introduces the model theory of first-order logic, avoiding syntactical issues not too relevant to model theory. In this spirit, the compactness theorem is proved via the algebraically useful ultrsproduct technique (rather than via the completeness theorem of first-order logic). This leads fairly quickly to algebraic applications, like Malcev's local theorems of group theory and, after a little more preparation, to Hilbert's Nullstellensatz of field theory.

Steinitz dimension theory for field extensions is obtained as a special case of a much more general model-theoretic treatment of strongly minimal theories. There is a final chapter on the models of the first-order theory of the integers as an abelian group. Both these topics appear here for the first time in a textbook at the introductory level, and are used to give hints to further reading and to recent developments in the field, such as stability (or classification) theory.
Preface ix
Introduction xi
Interdependence chart xiv
Notation xv
I Basics 1(38)
Structures
3(8)
Signatures
3(1)
Structures
4(1)
Homomorphisms
5(2)
Restrictions onto subsets
7(1)
Reductions onto subsignatures
8(1)
Products
9(2)
Languages
11(10)
Alphabets
11(1)
Terms
12(1)
Formulas
13(1)
Abbreviations
14(2)
Free and bound variables
16(1)
Substitutions
17(2)
The language of pure identity
19(2)
Semantics
21(18)
Expansions by constants, truth and satisfaction
22(4)
Definable sets and relations
26(2)
Models and entailment
28(4)
Theories and axiomatizable classes
32(4)
Complete theories
36(2)
Empty structures in languages without constants
38(1)
II Beginnings of model theory 39(70)
The finiteness theorem
41(8)
Filters and reduced products
41(2)
Ultrafilters and ultraproducts
43(2)
The finiteness theorem
45(4)
First consequences of the finiteness theorem
49(18)
The Lowenheim-Skolem Theorem Upward
49(2)
Semigroups, monoids, and groups
51(2)
Rings and fields
53(4)
Vector spaces
57(1)
Orderings and ordered structures
58(2)
Boolean algebras
60(4)
Some topology (or why the finiteness theorem is also called compactness theorem)
64(3)
Malcev's applications to group theory
67(20)
Diagrams
67(4)
Simple preservation theorems
71(5)
Finitely generated structures and local properties
76(4)
The interpretation lemma
80(3)
Malcev's local theorems
83(4)
Some theory of orderings
87(22)
Positive diagrams
87(1)
The theorem of Marczewski-Szpilrajn
88(1)
Cantor's theorem
89(1)
Well-orderings
90(5)
Ordinal numbers and transfinite induction
95(7)
Cardinal numbers
102(7)
III Basic properties of theories 109(52)
Elementary maps
111(16)
Elementary equivalence
111(1)
Elementary maps
112(3)
Elementary substructures and extensions
115(3)
Existence of elementary substructures and extensions
118(4)
Categoricity and prime models
122(5)
Elimination
127(24)
Elimination in general
127(3)
Quantifier elimination
130(6)
Dense linear orderings
136(2)
Algebraically closed fields
138(4)
Field-theoretic applications
142(4)
Model-completeness
146(5)
Chains
151(10)
Elementary chains
151(1)
Inductive theories
152(3)
Lyndon's preservation theorem
155(6)
IV Theories and types 161(44)
Types
163(22)
The Prufer group
163(3)
Types and their realization
166(3)
Complete types and Stone spaces
169(6)
Isolated and algebraic types
175(4)
Algebraic closure
179(6)
Thick and thin models
185(10)
Saturated structures
185(6)
Atomic structures
191(4)
Countable complete theories
195(10)
Omitting types
195(3)
Prime models
198(2)
Countably categorical theories
200(2)
Finitely many countable models
202(3)
V Two applications 205(64)
Strongly minimal theories
207(32)
Basic properties
208(5)
Categoricity, saturated and atomic models
213(2)
Dimension
215(6)
Steinitz' Theorem---categoricity revisited
221(4)
The chain of models
225(5)
Homogeneity and total categoricity
230(6)
Tiny models
236(3)
Z
239(30)
Axiomatization, pure maps and ultrahomogeneous structures
239(3)
Quantifier elimination and completeness
242(4)
Elementary maps and prime models
246(1)
Types and stability
247(5)
Positively saturated models and direct summands
252(6)
Reduced and saturated models
258(4)
The spectrum
262(2)
A sort of epilogue
264(5)
Hints to selected exercises 269(8)
Solutions for selected exercises 277(4)
Bibliography and hints for further reading 281(12)
Symbols 293(4)
Index 297


Rothmaler, Philipp