Muutke küpsiste eelistusi

E-raamat: Introduction to Neuro-Fuzzy Systems

  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Fuzzy sets were introduced by Zadeh (1965) as a means of representing and manipulating data that was not precise, but rather fuzzy. Fuzzy logic pro­ vides an inference morphology that enables approximate human reasoning capabilities to be applied to knowledge-based systems. The theory of fuzzy logic provides a mathematical strength to capture the uncertainties associ­ ated with human cognitive processes, such as thinking and reasoning. The conventional approaches to knowledge representation lack the means for rep­ resentating the meaning of fuzzy concepts. As a consequence, the approaches based on first order logic and classical probablity theory do not provide an appropriate conceptual framework for dealing with the representation of com­ monsense knowledge, since such knowledge is by its nature both lexically imprecise and noncategorical. The developement of fuzzy logic was motivated in large measure by the need for a conceptual framework which can address the issue of uncertainty and lexical imprecision. Some of the essential characteristics of fuzzy logic relate to the following [ 242]. In fuzzy logic, exact reasoning is viewed as a limiting case of ap­ proximate reasoning. In fuzzy logic, everything is a matter of degree. In fuzzy logic, knowledge is interpreted a collection of elastic or, equivalently, fuzzy constraint on a collection of variables. Inference is viewed as a process of propagation of elastic con­ straints. Any logical system can be fuzzified. There are two main characteristics of fuzzy systems that give them better performance für specific applications.

Muu info

Springer Book Archives
Fuzzy systems
1(132)
An introduction to fuzzy logic
1(10)
Operations on fuzzy sets
11(7)
Fuzzy relations
18(8)
The extension principle
26(3)
The extension principle for n-place functions
29(10)
Metrics for fuzzy numbers
39(2)
Measures of possibility and necessity
41(4)
Fuzzy implications
45(4)
Linguistic variables
49(4)
The linguistic variable Truth
50(3)
The theory of approximate reasoning
53(18)
An introduction to fuzzy logic controllers
71(7)
Defuzzification methods
78(3)
Inference mechanisms
81(5)
Construction of data base and rule base of FLC
86(5)
The ball and beam problem
91(4)
Aggregation in fuzzy system modeling
95(3)
Averaging operators
98(11)
Fuzzy screening systems
109(6)
Applications of fuzzy systems
115(18)
Bibliography
119(14)
Artificial neural networks
133(38)
The perceptron learning rule
133(10)
The delta learning rule
143(6)
The delta learning rule with semilinear activation function
149(5)
The generalized delta learning rule
154(3)
Effectivity of neural networks
157(3)
Winner-take-all learning
160(4)
Applications of artificial neural networks
164(7)
Bibliography
169(2)
Fuzzy neural networks
171(84)
Integration of fuzzy logic and neural networks
171(4)
Fuzzy neurons
175(9)
Hybrid neural nets
184(11)
Computation of fuzzy logic inferences by hybrid neural net
195(6)
Trainable neural nets for fuzzy IF-THEN rules
201(7)
Implementation of fuzzy rules by regular FNN of Type 2
208(4)
Implementation of fuzzy rules by regular FNN of Type 3
212(4)
Tuning fuzzy control parameters by neural nets
216(8)
Fuzzy rule extraction from numerical data
224(4)
Neuro-fuzzy classifiers
228(7)
FULLINS
235(5)
Applications of fuzzy neural systems
240(15)
Bibliography
245(10)
Appendix
255(32)
Case study: A portfolio problem
255(7)
Tuning the membership functions
259(3)
Exercises
262(25)
Index 287