Muutke küpsiste eelistusi

E-raamat: Introduction to Number Theory

(Iowa State University)
  • Formaat: 164 pages
  • Sari: Textbooks in Mathematics
  • Ilmumisaeg: 24-Mar-2023
  • Kirjastus: Chapman & Hall/CRC
  • Keel: eng
  • ISBN-13: 9781000833836
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 51,99 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 164 pages
  • Sari: Textbooks in Mathematics
  • Ilmumisaeg: 24-Mar-2023
  • Kirjastus: Chapman & Hall/CRC
  • Keel: eng
  • ISBN-13: 9781000833836
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Introduction to Number Theory covers the essential content of an introductory number theory course including divisibility and prime factorization, congruences, and quadratic reciprocity. The instructor may also choose from a collection of additional topics.



Introduction to Number Theory covers the essential content of an introductory number theory course including divisibility and prime factorization, congruences, and quadratic reciprocity. The instructor may also choose from a collection of additional topics.

Aligning with the trend toward smaller, essential texts in mathematics, the author strives for clarity of exposition. Proof techniques and proofs are presented slowly and clearly.

The book employs a versatile approach to the use of algebraic ideas. Instructors who wish to put this material into a broader context may do so, though the author introduces these concepts in a non-essential way.

A final chapter discusses algebraic systems (like the Gaussian integers) presuming no previous exposure to abstract algebra. Studying general systems helps students to realize unique factorization into primes is a more subtle idea than may at first appear; students will find this chapter interesting, fun and quite accessible.

Applications of number theory include several sections on cryptography and other applications to further interest instructors and students alike.

Introduction. What is Number Theory?
1. Divisibility.
2. Congruences and
Modular Arithmetic. 3. Cryptography: An Introduction.
4. Perfect Numbers.
5.
Perfect Roots.
6. Quadratic Reciprocity.
7. Arithmetic Beyond Integers.
Mark Hunacek has advanced degrees in both mathematics (Ph.D., Rutgers University) and law (J.D., Drake University Law School). He is now a Teaching Professor Emeritus at Iowa State University, and before entering academia he was an Assistant Attorney General for the state of Iowa.