Muutke küpsiste eelistusi

E-raamat: Introduction to Numerical Electrostatics Using MATLAB

(New York University; Princeton University; Columbia University)
  • Formaat: PDF+DRM
  • Sari: IEEE Press
  • Ilmumisaeg: 18-Feb-2014
  • Kirjastus: Wiley-IEEE Press
  • Keel: eng
  • ISBN-13: 9781118755716
  • Formaat - PDF+DRM
  • Hind: 99,97 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Sari: IEEE Press
  • Ilmumisaeg: 18-Feb-2014
  • Kirjastus: Wiley-IEEE Press
  • Keel: eng
  • ISBN-13: 9781118755716

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Readers are guided step by step through numerous specific problems and challenges, covering all aspects of electrostatics with an emphasis on numerical procedures. The author focuses on practical examples, derives mathematical equations, and addresses common issues with algorithms. Introduction to Numerical Electrostatics contains problem sets, an accompanying web site with simulations, and a complete list of computer codes.

Computer source code listings on accompanying web site Problem sets included with book Readers using MATLAB or other simulation packages will gain insight as to the inner workings of these packages, and how to account for their limitations Example computer code is provided in MATLAB Solutions Manual The first book of its kind uniquely devoted to the field of computational electrostatics

Arvustused

The author well organized fundamental theories on electrostatics and also presented numerical examples, in which typical numerical methods, e.g., finite difference method, finite element method, and method of moment, are introduced and demonstrated by Matlab.  (Zentralblatt MATH, 1 October 2014)

Preface xi
Introduction xiii
Acknowledgments xv
1 A Review of Basic Electrostatics 1(32)
1.1 Charge, Force, and the Electric Field
1(4)
1.2 Electric Flux Density and Gauss's Law
5(2)
1.3 Conductors
7(3)
1.4 Potential, Gradient, and Capacitance
10(6)
1.5 Energy in the Electric Field
16(2)
1.6 Poisson's and Laplace's Equations
18(2)
1.7 Dielectric Interfaces
20(4)
1.8 Electric Dipoles
24(3)
1.9 The Case for Approximate Numerical Analysis
27(2)
Problems
29(4)
2 The Uses of Electrostatics 33(18)
2.1 Basic Circuit Theory
33(8)
2.2 Radio Frequency Transmission Lines
41(3)
2.3 Vacuum Tubes and Cathode Ray Tubes
44(3)
2.4 Field Emission and the Scanning Electron Microscope
47(1)
2.5 Electrostatic Force Devices
48(1)
2.6 Gas Discharges and Lighting Devices
49(2)
3 Introduction to the Method of Moments Technique for Electrostatics 51(16)
3.1 Fundamental Equations
51(4)
3.2 A Working Equation Set
55(1)
3.3 The Single-Point Approximation for Off-Diagonal Terms
56(1)
3.4 Exact Solutions for the Diagonal Term and In-Plane Terms
57(4)
3.5 Approximating Lij
61(3)
Problems
64(3)
4 Examples using the Method of Moments 67(22)
4.1 A First Modeling Program
67(1)
4.2 Input Data File Preparation for the First Modeling Program
68(3)
4.3 Processing the Input Data
71(2)
4.4 Generating the Lij Array
73(1)
4.5 Solving the System and Examining Some Results
73(3)
4.6 Limits of Resolution
76(2)
4.7 Voltages and Fields
78(4)
4.8 Varying the Geometry
82(5)
Problems
87(2)
5 Symmetries, Images and Dielectrics 89(34)
5.1 Symmetries
89(1)
5.2 Images
90(5)
5.3 Multiple Images and the Symmetric Stripline
95(7)
5.4 Dielectric Interfaces
102(6)
5.5 Two-Dimensional Cross Sections of Uniform Three-Dimensional Structures
108(5)
5.6 Charge Profiles and Current Bunching
113(3)
5.7 Cylinder between Two Planes
116(5)
Problems
121(2)
6 Triangles 123(36)
6.1 Introduction to Triangular Cells
123(1)
6.2 Right Triangles
124(1)
6.3 Calculating Li,i (Self) Coefficients
125(2)
6.4 Calculating Lij for i not = to j
127(1)
6.5 Basic Meshing and Data Formats for Triangular Cell MoM Programs
127(8)
6.6 Using MATLAB to Generate Triangular Meshings
135(4)
6.7 Calculating Voltages
139(2)
6.8 Calculating the Electric Field
141(2)
6.9 Three-Dimensional Structures
143(9)
6.10 Charge Profiles
152(4)
Problems
156(3)
7 Summary and Overview 159(4)
7.1 Where We Were, Where We're Going
159(4)
8 The Finite Difference Method 163(20)
8.1 Introduction and a Simple Example
163(2)
8.2 Setting Up and Solving a Basic Problem
165(7)
8.3 The Gauss-Seidel (Relaxation) Solution Technique
172(3)
8.4 Charge, Gauss's Law, and Resolution
175(2)
8.5 Voltages and Fields
177(1)
8.6 Stored Energy and Capacitance
178(3)
Problems
181(2)
9 Refining the Finite Difference Method 183(44)
9.1 Refined Grids
183(6)
9.2 Arbitrary Conductor Shapes
189(5)
9.3 Mixed Dielectric Regions and a New Derivation of the Finite Difference Equation
194(1)
9.4 Example: Structure with a Dielectric Interface
195(1)
9.5 Axisymmetric Cylindrical Coordinates
196(9)
9.6 Symmetry Boundary Condition
205(2)
9.7 Duality, and Upper and Lower Bounds to Solutions for Transmission Lines
207(7)
9.8 Extrapolation
214(3)
9.9 Three-Dimensional Grids
217(6)
Problems
223(4)
10 Multielectrode Systems 227(10)
10.1 Multielectrode Structures
227(2)
10.2 Utilizing Superposition
229(1)
10.3 Utilizing Symmetry
230(1)
10.4 Circuital Relations and a Caveat
230(2)
10.5 Floating Electrodes
232(2)
Problems
234(3)
11 Probabilistic Potential Theory 237(28)
11.1 Random Walks and the Diffusion Equation
237(2)
11.2 Voltage at a Point from Random Walks
239(7)
11.3 Diffusion
246(3)
11.4 Variable-Step-Size Random Walks
249(11)
11.5 Three-Dimensional Structures
260(1)
Problems
261(4)
12 The Finite Element Method (FEM) 265(24)
12.1 Introduction
265(1)
12.2 Solving Laplace's Equation by Minimizing Stored Energy
266(1)
12.3 A Simple One-Dimensional Example
267(4)
12.4 A Very Simple Finite Element Approximation
271(3)
12.5 Arbitrary Number of Lines Approximation
274(4)
12.6 Mixed Dielectrics
278(1)
12.7 A Quadratic Approximation
279(3)
12.8 A Simple Two-Dimensional FEM Program
282(5)
Problems
287(2)
13 Triangles and Two-Dimensional Unstructured Grids 289(14)
13.1 Introduction
289(1)
13.2 Aside: The Area of a Triangle
290(1)
13.3 The Coefficient Matrix
291(2)
13.4 A Simple Example
293(3)
13.5 A Two-Dimensional Triangular Mesh Program
296(4)
Problems
300(3)
14 A Zoning System and Some Examples 303(26)
14.1 General Introduction
303(1)
14.2 Introduction to gmsh
304(4)
14.3 Translating the gmsh.msh File
308(11)
14.4 Running the FEM Analysis
319(1)
14.5 More gmsh Features and Examining the Electric Field
320(4)
14.6 Multiple Electrodes
324(3)
Problems
327(2)
15 Some FEM Topics 329(46)
15.1 Symmetries
329(1)
15.2 A Symmetry Example, Including a Two-Sided Capacitance Estimate
330(7)
15.3 Axisymmetric Structures
337(11)
15.4 The Graded-Potential Boundary Condition
348(4)
15.5 Unbounded Regions
352(12)
15.6 Dielectric Materials
364(7)
Problems
371(4)
16 FEM in Three Dimensions 375(24)
16.1 Creating Three-Dimensional Meshes
375(9)
16.2 The FEM Coefficient Matrix in Three Dimensions
384(2)
16.3 Parsing the gmsh Files and Setting Boundary Conditions
386(6)
16.4 Open Boundaries and Cylinders in Space
392(4)
Problems
396(3)
17 Electrostatic Forces 399(24)
17.1 Introduction
399(1)
17.2 Electron Beam Acceleration and Control
400(8)
17.3 The Electrostatic Relay (Switch)
408(6)
17.4 Electrets and Piezoelectricity: An Overview
414(1)
17.5 Points on a Sphere
415(4)
Problems
419(4)
Appendix Interfacing with Other Languages 423(8)
Index 431
LAWRENCE N. DWORSKY earned his PhD and BEE in Electrical Engineering at New York University and his Masters of Electrical Engineering at Princeton University. He was an Assistant Professor of Mathematics at Union Community College and an Assistant Professor of Electrical Engineering at Columbia University. From 1974 until 2002, Dr Dworsky served on the technical staff of Motorola, Inc. He has 39 issued U.S. Patents and has authored numerous technical articles. This is his fourth book.