Preface |
|
v | |
|
|
ix | |
|
|
xv | |
|
|
xvii | |
Notation |
|
xix | |
|
|
1 | (4) |
|
2 Introduction to Pattern Recognition |
|
|
5 | (24) |
|
2.1 What Is Pattern Recognition? |
|
|
5 | (4) |
|
|
9 | (2) |
|
|
11 | (3) |
|
|
14 | (2) |
|
2.5 Types of Classification Problems |
|
|
16 | (3) |
|
|
19 | (4) |
|
Numerical Lab 2 The Iris Dataset |
|
|
23 | (4) |
|
|
27 | (1) |
|
|
27 | (1) |
|
|
28 | (1) |
|
|
29 | (26) |
|
Case Study 3 The Netflix Prize |
|
|
44 | (2) |
|
Numerical Lab 3 Overfitting and Underfitting |
|
|
46 | (4) |
|
|
50 | (1) |
|
|
51 | (1) |
|
|
51 | (2) |
|
|
53 | (2) |
|
|
55 | (28) |
|
|
55 | (2) |
|
|
57 | (16) |
|
|
73 | (1) |
|
Case Study 4 Defect Detection |
|
|
74 | (2) |
|
Numerical Lab 4 Working with Random Numbers |
|
|
76 | (3) |
|
|
79 | (1) |
|
|
79 | (3) |
|
|
82 | (1) |
|
5 Feature Extraction and Selection |
|
|
83 | (34) |
|
5.1 Fundamentals of Feature Extraction |
|
|
83 | (10) |
|
5.2 Feature Extraction and Selection |
|
|
93 | (10) |
|
Case Study 5 Image Searching |
|
|
103 | (1) |
|
Numerical Lab 5 Extracting Features and Plotting Classes |
|
|
104 | (4) |
|
|
108 | (2) |
|
|
110 | (4) |
|
|
114 | (3) |
|
6 Distance-Based Classification |
|
|
117 | (34) |
|
6.1 Definitions of Distance |
|
|
118 | (6) |
|
|
124 | (8) |
|
6.3 Distance-Based Classification |
|
|
132 | (2) |
|
6.4 Classifier Variations |
|
|
134 | (4) |
|
Case Study 6 Hand-writing Recognition |
|
|
138 | (3) |
|
Numerical Lab 6 Distance-Based Classifiers |
|
|
141 | (2) |
|
|
143 | (1) |
|
|
144 | (6) |
|
|
150 | (1) |
|
|
151 | (42) |
|
7.1 Parametric Estimation |
|
|
152 | (2) |
|
7.2 Parametric Model Learning |
|
|
154 | (10) |
|
7.3 Nonparametric Model Learning |
|
|
164 | (10) |
|
7.3.1 Histogram Estimation |
|
|
165 | (3) |
|
7.3.2 Kernel-Based Estimation |
|
|
168 | (4) |
|
7.3.3 Neighbourhood-based Estimation |
|
|
172 | (2) |
|
7.4 Distribution Assessment |
|
|
174 | (5) |
|
Case Study 7 Object Recognition |
|
|
179 | (1) |
|
Numerical Lab 7 Parametric and Nonparametric Estimation |
|
|
180 | (3) |
|
|
183 | (1) |
|
|
184 | (7) |
|
|
191 | (2) |
|
8 Statistics-Based Classification |
|
|
193 | (38) |
|
8.1 Non-Bayesian Classification: Maximum Likelihood |
|
|
194 | (4) |
|
8.2 Bayesian Classification: Maximum a Posteriori |
|
|
198 | (3) |
|
8.3 Statistical Classification for Normal Distributions |
|
|
201 | (3) |
|
|
204 | (7) |
|
8.5 Other Statistical Classifiers |
|
|
211 | (2) |
|
Case Study 8 Medical Assessments |
|
|
213 | (5) |
|
Numerical Lab 8 Statistical and Distance-Based Classifiers |
|
|
218 | (2) |
|
|
220 | (1) |
|
|
221 | (9) |
|
|
230 | (1) |
|
9 Classifier Testing and Validation |
|
|
231 | (36) |
|
|
231 | (8) |
|
9.2 Classifier Evaluation |
|
|
239 | (10) |
|
9.3 Classifier Validation |
|
|
249 | (6) |
|
Case Study 9 Autonomous Vehicles |
|
|
255 | (2) |
|
Numerical Lab 9 Leave-One-Out Validation |
|
|
257 | (3) |
|
|
260 | (1) |
|
|
260 | (5) |
|
|
265 | (2) |
|
10 Discriminant-Based Classification |
|
|
267 | (32) |
|
10.1 Linear Discriminants |
|
|
269 | (2) |
|
10.2 Discriminant Model Learning |
|
|
271 | (9) |
|
10.3 Nonlinear Discriminants |
|
|
280 | (5) |
|
10.4 Multi-Class Problems |
|
|
285 | (3) |
|
Case Study 10 Digital Communications |
|
|
288 | (3) |
|
Numerical Lab 10 Discriminants |
|
|
291 | (3) |
|
|
294 | (1) |
|
|
294 | (4) |
|
|
298 | (1) |
|
11 Ensemble Classification |
|
|
299 | (48) |
|
11.1 Combining Classifiers |
|
|
301 | (4) |
|
11.2 Resampling Strategies |
|
|
305 | (7) |
|
11.3 Sequential Strategies |
|
|
312 | (7) |
|
11.4 Nonlinear Strategies |
|
|
319 | (13) |
|
11.4.1 Neural Network learning |
|
|
320 | (5) |
|
11.4.2 Deep Neural Network Classifiers |
|
|
325 | (7) |
|
Case Study 11 Interpretability and Ethics of Large Networks |
|
|
332 | (4) |
|
Numerical Lab 11 Ensemble Classifiers |
|
|
336 | (2) |
|
|
338 | (1) |
|
|
339 | (5) |
|
|
344 | (3) |
|
12 Model-Free Classification |
|
|
347 | (42) |
|
12.1 Unsupervised Learning |
|
|
348 | (22) |
|
12.1.1 K-Means Clustering |
|
|
351 | (7) |
|
12.1.2 Kernel K-Means Clustering |
|
|
358 | (5) |
|
12.1.3 Mean-Shift Clustering |
|
|
363 | (2) |
|
12.1.4 Hierarchical Clustering |
|
|
365 | (5) |
|
12.2 Network-Based Clustering |
|
|
370 | (3) |
|
12.3 Semi-Supervised Learning |
|
|
373 | (3) |
|
Case Study 12 Ancient Text Analysis: Who Wrote What? |
|
|
376 | (2) |
|
Numerical Lab 12 Clustering |
|
|
378 | (3) |
|
|
381 | (1) |
|
|
381 | (6) |
|
|
387 | (2) |
|
13 Conclusions and Directions |
|
|
389 | (6) |
|
|
395 | (72) |
|
|
397 | (9) |
|
|
404 | (1) |
|
|
405 | (1) |
|
|
406 | (1) |
|
B Random Variables and Random Vectors |
|
|
407 | (17) |
|
|
407 | (2) |
|
|
409 | (1) |
|
B.3 Conditional Statistics |
|
|
410 | (1) |
|
B.4 Random Vectors and Covariances |
|
|
411 | (5) |
|
B.5 Outliers and Heavy-Tail Distributions |
|
|
416 | (4) |
|
|
420 | (2) |
|
|
422 | (1) |
|
|
422 | (2) |
|
|
424 | (3) |
|
C Introduction to Optimization |
|
|
427 | (9) |
|
|
427 | (1) |
|
C.2 One-Dimensional Optimization |
|
|
428 | (3) |
|
C.3 Multi-Dimensional Optimization |
|
|
431 | (3) |
|
C.4 Multi-Objective Optimization |
|
|
434 | (1) |
|
|
435 | (1) |
|
|
436 | (1) |
|
|
436 | (1) |
|
D Mathematical Derivations |
|
|
437 | (30) |
Index |
|
467 | |