Muutke küpsiste eelistusi

E-raamat: Introduction to Pattern Recognition: A Matlab Approach

(Institute for Space Applications & Remote Sens), (Lecturer, Department of Informatics, University of Piraeus, Greece), , (Professor of Machine Learning and Signal Processing, National and Kapodistrian University of Athens, Athens, Greece)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 03-Mar-2010
  • Kirjastus: Academic Press Inc
  • Keel: eng
  • ISBN-13: 9780080922751
  • Formaat - PDF+DRM
  • Hind: 30,86 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 03-Mar-2010
  • Kirjastus: Academic Press Inc
  • Keel: eng
  • ISBN-13: 9780080922751

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Introduction to Pattern Recognition: A Matlab Approach is an accompanying manual to Theodoridis/Koutroumbas' Pattern Recognition.

It includes Matlab code of the most common methods and algorithms in the book, together with a descriptive summary and solved examples, and including real-life data sets in imaging and audio recognition.

This text is designed for electronic engineering, computer science, computer engineering, biomedical engineering and applied mathematics students taking graduate courses on pattern recognition and machine learning as well as R&D engineers and university researchers in image and signal processing/analyisis, and computer vision.

Muu info

An accompanying manual to Theodoridis/Koutroumbas, Pattern Recognition, that includes Matlab code of the most common methods and algorithms in the book, together with a descriptive summary and solved examples, and including real-life data sets in imaging and audio recognition.
Preface ix
Classifiers Based on Bayes Decision Theory
1(28)
Introduction
1(1)
Bayes Decision Theory
1(1)
The Gaussian Probability Density Function
2(4)
Minimum Distance Classifiers
6(5)
The Euclidean Distance Classifier
6(1)
The Mahalanobis Distance Classifier
6(1)
Maximum Likelihood Parameter Estimation of Gaussian pdfs
7(4)
Mixture Models
11(2)
The Expectation-Maximization Algorithm
13(6)
Parzen Windows
19(2)
k-Nearest Neighbor Density Estimation
21(1)
The Naive Bayes Classifier
22(3)
The Nearest Neighbor Rule
25(4)
Classifiers Based on Cost Function Optimization
29(50)
Introduction
29(1)
The Perceptron Algorithm
30(5)
The Online Form of the Perceptron Algorithm
33(2)
The Sum of Error Squares Classifier
35(8)
The Multiclass LS Classifier
39(4)
Support Vector Machines: The Linear Case
43(7)
Multiclass Generalizations
48(2)
SVM: The Nonlinear Case
50(8)
The Kernel Perceptron Algorithm
58(5)
The AdaBoost Algorithm
63(3)
Multilayer Perceptrons
66(13)
Data Transformation: Feature Generation and Dimensionality Reduction
79(28)
Introduction
79(1)
Principal Component Analysis
79(5)
The Singular Value Decomposition Method
84(3)
Fisher's Linear Discriminant Analysis
87(5)
The Kernel PCA
92(9)
Laplacian Eigenmap
101(6)
Feature Selection
107(30)
Introduction
107(1)
Outlier Removal
107(1)
Data Normalization
108(3)
Hypothesis Testing: The t-Test
111(2)
The Receiver Operating Characteristic Curve
113(1)
Fisher's Discriminant Ratio
114(3)
Class Separability Measures
117(5)
Divergence
118(1)
Bhattacharyya Distance and Chernoff Bound
119(1)
Measures Based on Scatter Matrices
120(2)
Feature Subset Selection
122(15)
Scalar Feature Selection
123(1)
Feature Vector Selection
124(13)
Template Matching
137(10)
Introduction
137(1)
The Edit Distance
137(2)
Matching Sequences of Real Numbers
139(4)
Dynamic Time Warping in Speech Recognition
143(4)
Hidden Markov Models
147(12)
Introduction
147(1)
Modeling
147(1)
Recognition and Training
148(11)
Clustering
159(50)
Introduction
159(1)
Basic Concepts and Definitions
159(1)
Clustering Algorithms
160(1)
Sequential Algorithms
161(7)
BSAS Algorithm
161(1)
Clustering Refinement
162(6)
Cost Function Optimization Clustering Algorithms
168(21)
Hard Clustering Algorithms
168(16)
Nonhard Clustering Algorithms
184(5)
Miscellaneous Clustering Algorithms
189(9)
Hierarchical Clustering Algorithms
198(11)
Generalized Agglomerative Scheme
199(1)
Specific Agglomerative Clustering Algorithms
200(3)
Choosing the Best Clustering
203(6)
Appendix 209(6)
References 215(2)
Index 217
Sergios Theodoridis is professor emeritus of machine learning and data processing with the National and Kapodistrian University of Athens, Athens, Greece. He has also served as distinguished professor with the Aalborg University Denmark and as professor with the Chinese University of Hong Kong, Shenzhen, China. In 2023, he received an honorary doctorate degree (D.Sc) from the University of Edinburgh, U.K. He has also received a number of prestigious awards, including the 2014 IEEE Signal Processing Magazine Best Paper Award, the 2009 IEEE Computational Intelligence Society Transactions on Neural Networks Outstanding Paper Award, the 2017 European Association for Signal Processing (EURASIP) Athanasios Papoulis Award, the 2014 IEEE Signal Processing Society Carl Friedrich Gauss Education Award, and the 2014 EURASIP Meritorious Service Award. He has served as president of EURASIP and vice president for the IEEE Signal Processing Society. He is a Fellow of EURASIP and a Life Fellow of IEEE. He is the coauthor of the book Pattern Recognition, 4th edition, Academic Press, 2009 and of the book Introduction to Pattern Recognition: A MATLAB Approach, Academic Press, 2010.

Aggelos Pikrakis is a Lecturer in the Department of Informatics at the University of Piraeus. His research interests stem from the fields of pattern recognition, audio and image processing, and music information retrieval. He is also the co-author of Introduction to Pattern Recognition: A MATLAB Approach (Academic Press, 2010). Konstantinos Koutroumbas acquired a degree from the University of Patras, Greece in Computer Engineering and Informatics in 1989, a MSc in Computer Science from the University of London, UK in 1990, and a Ph.D. degree from the University of Athens in 1995. Since 2001 he has been with the Institute for Space Applications and Remote Sensing of the National Observatory of Athens.