Muutke küpsiste eelistusi

E-raamat: Introduction to the Physics of Massive and Mixed Neutrinos

  • Formaat: EPUB+DRM
  • Sari: Lecture Notes in Physics 947
  • Ilmumisaeg: 02-Apr-2018
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319748023
  • Formaat - EPUB+DRM
  • Hind: 67,91 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Sari: Lecture Notes in Physics 947
  • Ilmumisaeg: 02-Apr-2018
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319748023

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Small neutrino masses are the first signs of new physics beyond the Standard Model of particle physics. Since the first edition of this textbook appeared in 2010, the Nobel Prize has been awarded "for the discovery of neutrino oscillations, which shows that neutrinos have mass".

The measurement of the small neutrino mixing angle $\theta_{13}$ in 2012, launched the precision stage of the investigation of neutrino oscillations. This measurement now allows such fundamental problems as the three-neutrino mass spectrum - is it normal or inverted? – and the $CP$ violation in the lepton sector to be tackled.

In order to understand the origin of small neutrino masses, it remains crucial to reveal the nature of neutrinos with definite masses: are they Dirac neutrinos possessing a conserved lepton number, which distinguishes neutrinos and antineutrinos, or are they Majorana neutrinos with identical neutrinos and antineutrinos? Experiments searching for the neutrinoless double beta decay are presently under way to answer this fundamental question.

The second edition of this book comprehensively discusses all these important recent developments. Based on numerous lectures given by the author, a pioneer of modern neutrino physics (recipient of the Bruno Pontecorvo Prize 2002), at different institutions and schools, it offers a gentle yet detailed introduction to the physics of massive and mixed neutrinos that prepares graduate students and young researchers entering the field for the exciting years ahead in neutrino physics.

This gentle but detailed introduction to the physics of massive and mixed neutrinos is based on the author’s lectures. It aims to prepare graduate students and young researchers entering the field for the exciting years of neutrino physics to come.

1 Introduction
1(10)
2 Weak Interaction Before the Standard Model
11(24)
2.1 Pauli Hypothesis of Neutrino
11(2)
2.2 Fermi Theory of β-Decay
13(1)
2.3 General Four-Fermion Hamiltonian of β-Decay
14(1)
2.4 Violation of Parity in β--Decay
15(2)
2.5 Two-Component Neutrino Theory
17(4)
2.6 /x-e Universal Charged Current. Current x Current Theory
21(3)
2.7 Theory with Vector W Boson
24(1)
2.8 First Observation of Neutrinos: Lepton Number Conservation
25(2)
2.9 Discovery of Muon Neutrino: Electron and Muon Lepton Numbers
27(2)
2.10 Strange Particles. Quarks. Cabibbo Current
29(2)
2.11 Charmed Quark
31(2)
2.12 Concluding Remarks
33(2)
3 The Standard Model of the Electroweak Interaction
35(32)
3.1 Introduction
35(1)
3.2 SU(2) Yang-Mills Local Gauge Invariance
36(6)
3.3 Spontaneous Symmetry Breaking. Brout-Englert-Higgs Mechanism
42(5)
3.4 The Standard Model for Leptons and Quarks
47(17)
3.5 Concluding Remarks
64(3)
4 Neutrino Mass Terms
67(12)
4.1 Introduction
67(1)
4.2 Dirac Mass Term
68(1)
4.3 Majorana Mass Term
69(3)
4.4 Dirac and Majorana Mass Term
72(3)
4.5 Neutrino Mass Term in the Simplest Case of Two Neutrino Fields
75(3)
4.6 Concluding Remarks
78(1)
5 Seesaw Mechanism of the Neutrino Mass Generation
79(10)
5.1 Introduction
79(2)
5.2 The Generation of the Neutrino Masses by Effective Lagrangian Method
81(4)
5.3 Diagonalization of the Seesaw Matrix
85(2)
5.4 Concluding Remarks
87(2)
6 Neutrino Mixing Matrix
89(14)
6.1 Introduction
89(1)
6.2 The Number of Angles and Phases in the Matrix U
90(1)
6.3 CP Conservation in the Lepton Sector
91(3)
6.4 Standard Parametrization of 3 × 3 Mixing Matrix
94(3)
6.5 On Models of Neutrino Mixing
97(6)
7 Neutrino Oscillations in Vacuum
103(26)
7.1 Introduction
103(1)
7.2 Flavor Neutrino States. Oscillations of Flavor Neutrinos
104(6)
7.3 Standard Expression for νl → νl' (νl -- νl') Transition Probability
110(2)
7.4 Alternative Expression for Neutrino (Antineutrino) Transition Probability in Vacuum
112(17)
7.4.1 Two-Neutrino Oscillations
113(3)
7.4.2 Three-Neutrino Oscillations
116(3)
7.4.3 Neutrino Oscillations in Leading Approximation
119(2)
7.4.4 νe → νe Survival Probability
121(1)
7.4.5 ν μ →e and ν μ νe Appearance Probabilities
122(1)
7.4.6 ν → νμ Survival Probability
123(1)
7.4.7 Transitions of Flavor Neutrinos into Sterile States
124(5)
8 Neutrino in Matter
129(18)
8.1 Introduction
129(1)
8.2 Evolution Equation of Neutrino in Matter
129(4)
8.3 Propagation of Neutrino in Matter with Constant Density
133(4)
8.4 Adiabatic Transitions of Neutrino in Matter
137(4)
8.5 Two-Neutrino Case
141(6)
9 Neutrinoless Double Beta-Decay
147(22)
9.1 Introduction
147(2)
9.2 Basic Elements of the Theory of 0νββ-Decay
149(11)
9.3 Effective Majorana Mass
160(3)
9.3.1 Hierarchy of the Neutrino Masses
161(1)
9.3.2 Inverted Hierarchy of the Neutrino Masses
162(1)
9.3.3 Quasi-Degenerate Neutrino Mass Spectrum
163(1)
9.4 On the Nuclear Matrix Elements of the 0νββ-Decay
163(2)
9.5 Experiments on the Search for 0νββ-Decay
165(4)
10 On Absolute Values of Neutrino Masses
169(6)
10.1 Masses of Muon and Tau Neutrinos
169(1)
10.2 Effective Neutrino Mass from the Measurement of the High-Energy Part of the -Spectrum of Tritium
170(5)
11 Neutrino Oscillation Experiments
175(34)
11.1 Introduction
175(2)
11.2 Solar Neutrino Experiments
177(12)
11.2.1 Introduction
177(3)
11.2.2 Homestake Chlorine Solar Neutrino Experiment
180(1)
11.2.3 Radiochemical GALLEX-GNO and SAGE Experiments
181(2)
11.2.4 Kamiokande and Super-Kamiokande Solar Neutrino Experiments
183(2)
11.2.5 SNO Solar Neutrino Experiment
185(2)
11.2.6 Borexino Solar Neutrino Experiment
187(2)
11.3 Super-Kamiokande Atmospheric Neutrino Experiment
189(5)
11.4 KamLAND Reactor Neutrino Experiment
194(2)
11.5 Measurement of the Angle $13 in Reactor Experiments
196(6)
11.5.1 Introduction: CHOOZ Reactor Experiment
196(1)
11.5.2 Day a Bay Experiment
197(5)
11.6 Long-Baseline Accelerator Neutrino Experiments
202(7)
11.6.1 K2K Accelerator Neutrino Experiment
202(1)
11.6.2 MINOS Accelerator Neutrino Experiment
203(1)
11.6.3 T2K Experiment
204(2)
11.6.4 NOvA Experiment
206(3)
12 Neutrino in Cosmology
209(38)
12.1 Basics of Cosmology
209(12)
12.1.1 Introduction
209(1)
12.1.2 Cosmological Principle
209(1)
12.1.3 Friedman-Robertson-Walker Metric: Hubble Law
210(3)
12.1.4 Friedman Equations
213(6)
12.1.5 Solutions of the Friedman Equation
219(2)
12.2 Early Universe; Neutrino Decoupling
221(7)
12.3 Neutrino Background
228(1)
12.4 Big Bang Nucleosynthesis
229(4)
12.5 Large Scale Structure of the Universe and Neutrino Masses
233(4)
12.6 Cosmic Microwave Background Radiation
237(2)
12.7 Supernova Neutrinos
239(3)
12.8 Baryogenesis Through Leptogenesis
242(5)
13 Conclusion and Prospects
247(6)
Appendices
A Diagonalization of a Complex Matrix
253(4)
B Diagonalization of a Complex Symmetrical Matrix
257(2)
C Diagonalization of a Real Symmetrical 2×2 Matrix
259(2)
References 261(12)
Index 273
Samoil Bilenky (*1928) is known as one of the pioneers in modern neutrino physics. A long-standing collaborator of Bruno Pontecorvo (1913-1993) in Dubna, he received the Humboldt Research Award in 1999 and the Bruno Pontecorvo prize in 2002.