Muutke küpsiste eelistusi

E-raamat: Introduction to Quantum Metrology: Quantum Standards and Instrumentation

  • Formaat: PDF+DRM
  • Ilmumisaeg: 24-Mar-2015
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319156699
  • Formaat - PDF+DRM
  • Hind: 122,88 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 24-Mar-2015
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319156699

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book presents the theory of quantum effects used in metrology and results of the author’s own research in the field of quantum electronics. The book provides also quantum measurement standards used in many branches of metrology for electrical quantities, mass, length, time and frequency. This book represents the first comprehensive survey of quantum metrology problems. As a scientific survey, it propagates a new approach to metrology with more emphasis on its connection with physics. This is of importance for the constantly developing technologies and nanotechnologies in particular. Providing a presentation of practical applications of the effects used in quantum metrology for the construction of quantum standards and sensitive electronic components, the book is useful for a wide audience of physicists and metrologists in the broad sense of both terms. In 2014 a new system of units, the so called Quantum SI, is introduced. This book helps to understand and approve the new system to both technology and academic community.

1 Theoretical Background of Quantum Metrology 1(10)
1.1 Introduction
1(2)
1.2 Schrodinger Equation and Pauli Exclusion Principle
3(3)
1.3 Heisenberg Uncertainty Principle
6(2)
1.4 Limits of Measurement Resolution
8(2)
References
10(1)
2 Measures, Standards and Systems of Units 11(30)
2.1 History of Systems of Measurement
11(3)
2.2 The International System of Units (SI)
14(4)
2.3 Measurements and Standards of Length
18(4)
2.4 Measurements and Standards of Mass
22(3)
2.5 Clocks and Measurements of Time
25(5)
2.6 Temperature Scales
30(5)
2.7 Standards of Electrical Quantities
35(4)
References
39(2)
3 The New SI System of Units—The Quantum SI 41(18)
3.1 Towards the New System of Units
41(3)
3.2 Units of Measure Based on Fundamental Physical Constants
44(2)
3.3 New Definitions of the Kilogram
46(2)
3.4 New Definitions of the Ampere, Kelvin and Mole
48(3)
3.5 Quantum Metrological Triangle and Pyramid
51(5)
References
56(3)
4 Quantum Voltage Standards 59(34)
4.1 Superconductivity
59(6)
4.1.1 Superconducting Materials
59(4)
4.1.2 Theories of Superconductivity
63(1)
4.1.3 Properties of Superconductors
64(1)
4.2 Josephson Effect
65(4)
4.3 Josephson Junctions
69(4)
4.4 Voltage Standards
73(12)
4.4.1 Voltage Standards with Weston Cells
73(2)
4.4.2 DC Voltage Josephson Standards
75(2)
4.4.3 AC Voltage Josephson Standards
77(3)
4.4.4 Voltage Standard at GUM
80(3)
4.4.5 Comparison GUM Standard with the BIPM Standard
83(1)
4.4.6 Precision Comparator Circuits
84(1)
4.5 Superconductor Digital Circuits
85(4)
4.5.1 Prospective Development of Semiconductor Digital Circuits
85(1)
4.5.2 Digital Circuits with Josephson Junctions
86(3)
4.6 Other Applications of Josephson Junctions
89(2)
4.6.1 Voltage-to-Frequency Converter
89(2)
4.6.2 Source of Terahertz Radiation
91(1)
References
91(2)
5 SQUID Detectors of Magnetic Flux 93(42)
5.1 Quantization of Magnetic Flux
93(5)
5.2 RF-SQUID
98(3)
5.2.1 RF-SQUID Equation
98(1)
5.2.2 Measurement System with an RF-SQUID
99(2)
5.3 DC-SQUID
101(10)
5.3.1 DC-SQUID Equation
101(6)
5.3.2 Energy Resolution and Noise of the DC-SQUID
107(3)
5.3.3 Parameters of a DC-SQUID
110(1)
5.4 Measurement System with a DC-SQUID
111(9)
5.4.1 Operation of the Measurement System
111(2)
5.4.2 Input Circuit
113(3)
5.4.3 Two-SQUID Measurement System
116(1)
5.4.4 SQUID Measurement System with Additional Positive Feedback
117(2)
5.4.5 Digital SQUID Measurement System
119(1)
5.5 Magnetic Measurements with SQUID Systems
120(7)
5.5.1 Magnetic Signals and Interference
120(2)
5.5.2 Biomagnetic Studies
122(3)
5.5.3 Nondestructive Evaluation of Materials
125(2)
5.6 SQUID Noise Thermometers
127(6)
5.6.1 R-SQUID Noise Thermometer
127(3)
5.6.2 DC-SQUID Noise Thermometer
130(2)
5.6.3 Other Applications of SQUIDs
132(1)
References
133(2)
6 Quantum Hall Effect and the Resistance Standard 135(22)
6.1 Hall Effect
135(2)
6.2 Quantum Hall Effect
137(8)
6.2.1 Electronic Devices with 2-DEG
137(1)
6.2.2 Physical Grounds of the Quantum Hall Effect
138(3)
6.2.3 QHE Samples
141(3)
6.2.4 Quantum Hall Effect in Graphene
144(1)
6.3 Measurement Setup of the Classical Electrical Resistance Standard at the GUM
145(4)
6.4 Quantum Standard Measurement Systems
149(3)
6.5 Quantum Standard of Electrical Resistance in the SI System
152(2)
References
154(3)
7 Quantization of Electrical and Thermal Conductance in Nanostructures 157(16)
7.1 Theories of Electrical Conduction
157(5)
7.2 Macroscopic and Nanoscale Structures
162(1)
7.3 Studies of Conductance Quantization in Nanostructures
163(4)
7.3.1 Formation of Nanostructures
163(3)
7.3.2 Measurements of Dynamically Formed Nanowires
166(1)
7.4 Quantization of Thermal Conductance in Nanostructures
167(2)
7.5 Scientific and Technological Impacts of Conductance Quantization in Nanostructures
169(2)
References
171(2)
8 Single Electron Tunneling 173(14)
8.1 Electron Tunneling
173(3)
8.1.1 Phenomenon of Tunneling
173(1)
8.1.2 Theory of Single Electron Tunneling
174(2)
8.2 Electronic Circuits with SET Junctions
176(4)
8.2.1 SETT Transistor
176(2)
8.2.2 Electron Pump and Turnstile Device
178(2)
8.3 Capacitance Standard Based on Counting Electrons
180(2)
8.4 Thermometer with the Coulomb Blockade
182(2)
References
184(3)
9 Atomic Clocks and Time Scales 187(28)
9.1 Theoretical Principles
187(8)
9.1.1 Introduction
187(3)
9.1.2 Allan Variance
190(3)
9.1.3 Structure and Types of Atomic Standards
193(2)
9.2 Caesium Atomic Frequency Standards
195(5)
9.2.1 Caesium-Beam Frequency Standard
195(3)
9.2.2 Caesium Fountain Frequency Standard
198(2)
9.3 Hydrogen Maser and Rubidium Frequency Standard
200(4)
9.3.1 Hydrogen Maser Frequency Standard
200(2)
9.3.2 Rubidium Frequency Standard
202(1)
9.3.3 Parameters of Atomic Frequency Standards
203(1)
9.4 Optical Radiation Frequency Standards
204(5)
9.4.1 Sources of Optical Radiation
204(2)
9.4.2 Optical Frequency Comb
206(3)
9.5 Time Scales
209(3)
9.6 National Time and Frequency Standard in Poland
212(2)
References
214(1)
10 Standards and Measurements of Length 215(22)
10.1 Introduction
215(2)
10.2 Realization of the Definition of the Metre
217(6)
10.2.1 CIPM Recommendations Concerning the Realization of the Metre
217(4)
10.2.2 Measurements of Length by the CIPM Recommendation
221(2)
10.3 Iodine-Stabilized 633 nm He-Ne Laser
223(3)
10.4 Satellite Positioning Systems
226(9)
10.4.1 Positioning Systems
226(1)
10.4.2 Global Positioning System
227(4)
10.4.3 GLONASS Positioning System
231(3)
10.4.4 Galileo Positioning System
234(1)
10.4.5 Regional Positioning Systems: BeiDou, IRNSS and QZSS
234(1)
References
235(2)
11 Scanning Probe Microscopes 237(20)
11.1 Atomic Resolution Microscopes
237(3)
11.1.1 Operating Principle of a Scanning Probe Microscope
237(1)
11.1.2 Types of Near-Field Interactions in SPM
238(1)
11.1.3 Basic Parameters of SPM
239(1)
11.2 Scanning Tunneling Microscope
240(3)
11.3 Atomic Force Microscope
243(6)
11.3.1 Atomic Forces
243(1)
11.3.2 Performance of Atomic Force Microscope
244(1)
11.3.3 Measurements of Microscope Cantilever Deflection
245(3)
11.3.4 AFM with Measurement of Cantilever Resonance Oscillation
248(1)
11.4 Electrostatic Force Microscope
249(1)
11.5 Scanning Thermal Microscope
250(3)
11.6 Scanning Near-Field Optical Microscope
253(2)
11.7 Opportunities of Scanning Probe Microscopy Development
255(1)
References
255(2)
12 New Standards of Mass 257(16)
12.1 Introduction
257(3)
12.2 Mass Standards Based on the Planck Constant
260(5)
12.2.1 Watt Balance Standard
260(4)
12.2.2 Levitation Standard and Electrostatic Standard
264(1)
12.3 Silicon Sphere Standard
265(5)
12.3.1 Reference Mass and the Avogadro Constant
265(2)
12.3.2 Measurement of Volume of Silicon Unit Cell
267(1)
12.3.3 Measurement of Volume of Silicon Sphere
268(2)
12.4 Ions Accumulation Standard
270(2)
References
272(1)
Index 273