Muutke küpsiste eelistusi

E-raamat: Introduction to Quantum Optics and Quantum Fluctuations

(Laboratory Fellow and Research Professor, Los Alamos National Laboratory and University of Rochester)
  • Formaat: 544 pages
  • Sari: Oxford Graduate Texts
  • Ilmumisaeg: 31-Jan-2019
  • Kirjastus: Oxford University Press
  • Keel: eng
  • ISBN-13: 9780192566119
  • Formaat - PDF+DRM
  • Hind: 66,90 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 544 pages
  • Sari: Oxford Graduate Texts
  • Ilmumisaeg: 31-Jan-2019
  • Kirjastus: Oxford University Press
  • Keel: eng
  • ISBN-13: 9780192566119

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This is an introduction to the quantum theory of light and its broad implications and applications. A significant part of the book covers material with direct relevance to current basic and applied research, such as quantum fluctuations and their role in laser physics and the theory of forces between macroscopic bodies (Casimir effects). The book includes numerous historical sidelights throughout, and approximately seventy exercises.

The book provides detailed expositions of the theory with emphasis on general physical principles. Foundational topics in classical and quantum electrodynamics are addressed in the first half of the book, including the semiclassical theory of atom-field interactions, the quantization of the electromagnetic field in dispersive and dissipative media, uncertainty relations, and spontaneous emission. The second half begins with a chapter on the Jaynes-Cummings model, dressed states, and some distinctly quantum-mechanical features of atom-field interactions, and includes discussion of entanglement, the no-cloning theorem, von Neumann's proof concerning hidden variable theories, Bell's theorem, and tests of Bell inequalities. The last two chapters focus on quantum fluctuations and fluctuation-dissipation relations, beginning with Brownian motion, the Fokker-Planck equation, and classical and quantum Langevin equations. Detailed calculations are presented for the laser linewidth, spontaneous emission noise, photon statistics of linear amplifiers and attenuators, and other phenomena. Van der Waals interactions, Casimir forces, the Lifshitz theory of molecular forces between macroscopic media, and the many-body theory of such forces based on dyadic Green functions are analyzed from the perspective of Langevin noise, vacuum field fluctuations, and zero-point energy.

Arvustused

For the student who requires a broader understanding of quantum optics beyond a first course, this book is a treasure trove that will reward many hours of independent study beyond the introductory course. * Jonathan Blakely, , Contemporary Physics * Peter Milonnis text is a masterpiece of scholarship and clarity. The wide range of topics covered and the lucidity of the presentation will delight students and experts alike. * Stephen M. Barnett, School of Physics and Astronomy, University of Glasgow *

1 Elements of Classical Electrodynamics
1(68)
1.1 Electric and Magnetic Fields
1(3)
1.2 Earnshaw's Theorem
4(2)
1.3 Gauges and the Relativity of Fields
6(9)
1.4 Dipole Radiators
15(9)
1.5 Dielectrics and the Refractive Index
24(11)
1.6 Electromagnetic Energy and Intensity in Dielectrics
35(4)
1.7 Electromagnetic Momentum
39(5)
1.8 Forces and Momenta
44(4)
1.9 Stress Tensors
48(6)
1.10 Rayleigh Scattering
54(8)
1.11 Scattering Force and the Optical Theorem
62(3)
1.12 Thomson Scattering
65(4)
2 Atoms in Light: Semiclassical Theory
69(60)
2.1 Atom-Field Interaction
69(4)
2.2 Why the Electric Dipole Interaction?
73(7)
2.3 Semiclassical Radiation Theory
80(12)
2.4 Electric Dipole Matrix Elements
92(5)
2.5 Two-State Atoms
97(8)
2.6 Pulsed Excitation and Rabi Oscillations
105(2)
2.7 Transition Rates and the Golden Rule
107(5)
2.8 Blackbody Radiation and Fluctuations
112(10)
2.9 Photon Bunching
122(7)
3 Quantum Theory of the Electromagnetic Field
129(76)
3.1 The Harmonic Oscillator
129(4)
3.2 Field Hamiltonian
133(2)
3.3 Field Quantization: Energy and Momentum
135(6)
3.4 Quantized Fields in Dielectric Media
141(3)
3.5 Photons and Interference
144(3)
3.6 Quantum States of the Field and Their Statistical Properties
147(22)
3.7 The Density Operator
169(6)
3.8 Coherent-State Representation of the Density Operator
175(4)
3.9 Correlation Functions
179(3)
3.10 Field Commutators and Uncertainty Relations
182(8)
3.11 Complementarity: Wave and Particle Descriptions of Light
190(7)
3.12 More on Uncertainty Relations
197(8)
4 Interaction Hamiltonian and Spontaneous Emission
205(64)
4.1 Atom-Field Hamiltonian: Why Minimal Coupling?
205(6)
4.2 Electric Dipole Hamiltonian
211(6)
4.3 The Field of an Atom
217(5)
4.4 Spontaneous Emission
222(18)
4.5 Radiation Reaction and Vacuum-Field Fluctuations
240(10)
4.6 Fluctuations, Dissipation, and Commutators
250(3)
4.7 Spontaneous Emission and Semiclassical Theory
253(2)
4.8 Multistats Atoms
255(14)
5 Atoms and Light: Quantum Theory
269(56)
5.1 Optical Bloch Equations for Expectation Values
270(1)
5.2 Absorption and Stimulated Emission as Interference Effects
271(3)
5.3 The Jaynes-Cummings Model
274(7)
5.4 Collapses and Revivals
281(4)
5.5 Dressed States
285(4)
5.6 Resonance Fluorescence
289(8)
5.7 Photon Anti-Bunching in Resonance Fluorescence
297(4)
5.8 Polarization Correlations of Photons from an Atomic Cascade
301(6)
5.9 Entanglement
307(18)
6 Fluctuations, Dissipation, and Noise
325(84)
6.1 Brownian Motion and Einstein's Relations
325(3)
6.2 The Fokker-Planck Equation
328(5)
6.3 The Langevin Approach
333(4)
6.4 Fourier Representation, Stationarity, and Power Spectrum
337(4)
6.5 The Quantum Langevin Equation
341(10)
6.6 The Fluctuation-Dissipation Theorem
351(15)
6.7 The Energy and Free Energy of an Oscillator in a Heat Bath
366(5)
6.8 Radiation Reaction Revisited
371(7)
6.9 Spontaneous Emission Noise: The Laser Linewidth
378(13)
6.10 Amplification and Attenuation: The Noise Figure
391(4)
6.11 Photon Statistics of Amplification and Attenuation
395(3)
6.12 Amplified Spontaneous Emission
398(4)
6.13 The Beam Splitter
402(4)
6.14 Homodyne Detection
406(3)
7 Dipole Interactions and Fluctuation-Induced Forces
409(104)
7.1 Van der Waals Interactions
409(14)
7.2 Van der Waals Interaction in Dielectric Media
423(2)
7.3 The Casimir Force
425(13)
7.4 Zero-Point Energy and Fluctuations
438(9)
7.5 The Lifshitz Theory
447(12)
7.6 Quantized Fields in Dissipative Dielectric Media
459(13)
7.7 Green Functions and Many-Body Theory of Dispersion Forces
472(8)
7.8 Do Casimir Forces Imply the Reality of Zero-Point Energy?
480(2)
7.9 The Dipole-Dipole Resonance Interaction
482(15)
7.10 Forster Resonance Energy Transfer
497(5)
7.11 Spontaneous Emission near Reflectors
502(7)
7.12 Spontaneous Emission in Dielectric Media
509(4)
Appendices
513(8)
A Retarded Electric Field in the Coulomb Gauge
513(1)
B Transverse and Longitudinal Delta Functions
514(2)
C Photodetection, Normal Ordering, and Causality
516(5)
Bibliography 521(4)
Index 525
Peter W. Milonni is a Laboratory Fellow of the Los Alamos National Laboratory and a Research Professor of Physics at the University of Rochester. He has served on various advisory and editorial boards and as a consultant for several corporations, and received the Optical Society of America's 2008 Max Born Award "for exceptional contributions to the fields of theoretical optics, laser physics and quantum mechanics, and for dissemination of scientific knowledge through authorship of a series of outstanding books."