Muutke küpsiste eelistusi

E-raamat: Introduction to Quantum and Vassiliev Knot Invariants

  • Formaat: PDF+DRM
  • Sari: CMS Books in Mathematics
  • Ilmumisaeg: 04-May-2019
  • Kirjastus: Springer Nature Switzerland AG
  • Keel: eng
  • ISBN-13: 9783030052133
  • Formaat - PDF+DRM
  • Hind: 135,23 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: CMS Books in Mathematics
  • Ilmumisaeg: 04-May-2019
  • Kirjastus: Springer Nature Switzerland AG
  • Keel: eng
  • ISBN-13: 9783030052133

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book provides an accessible introduction to knot theory, focussing on Vassiliev invariants, quantum knot invariants constructed via representations of quantum groups, and how these two apparently distinct theories come together through the Kontsevich invariant. Consisting of four parts, the book opens with an introduction to the fundamentals of knot theory, and to knot invariants such as the Jones polynomial. The second part introduces quantum invariants of knots, working constructively from first principles towards the construction of Reshetikhin-Turaev invariants and a description of how these arise through Drinfeld and Jimbo's quantum groups. Its third part offers an introduction to Vassiliev invariants, providing a careful account of how chord diagrams and Jacobi diagrams arise in the theory, and the role that Lie algebras play. The final part of the book introduces the Konstevich invariant. This is a universal quantum invariant and a universal Vassiliev invariant, and brings together these two seemingly different families of knot invariants. The book provides a detailed account of the construction of the Jones polynomial via the quantum groups attached to sl(2), the Vassiliev weight system arising from sl(2), and how these invariants come together through the Kontsevich invariant.


Arvustused

 This text is a comprehensive and well written introduction to quantum and Vassiliev invariants of knots. There is sufficient detail for students and exercises. The text is also an excellent reference for researchers interested in quantum and Vassiliev invariants. (Heather A. Dye, zbMATH 1425.57007, 2019)

Part I Basic Knot Theory.- Knots.- Knot and Link Invariants.- Framed
Links.- Braids and the Braid Group.- Part II Quantum Knot Invariants.-
R-Matrix Representations of Bn.- Knot Invariants through R-Matrix
Representations of Bn.- Operator Invariants.- Ribbon Hopf Algebras.-
Reshetikin-Turaev Invariants.- Part III Vassiliev Invarients.- The
Fundamentals of Vassiliev Invariants.- Chord Diagrams.- Vassiliev Invariants
of Framed Knots.- Jacobi Diagrams.- Lie Algebra Weight Systems.- Part IV The
Kontsevich Invariant.- q-tangles.- Jacobi Diagrams on a 1-manifold.- A
Construction of the Kontsevich Invariant.- Universality Properties of the
Kontsevich Invariant.- Appendix A Background on Modules and Linear Algebra.-
Appendix B Rewriting the Definition of Operator Invariants.- Appendix C
Computations in Quasi-triangular Hopf Algebras.- Appendix D The Ribbon Hopf
Algebra.- Appendix E A Proof of the Invariance of the Reshetikin-Turaev
Invariants.