Muutke küpsiste eelistusi

E-raamat: Introduction to Quiver Representations

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 110,06 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book is an introduction to the representation theory of quivers and finite dimensional algebras. It gives a thorough and modern treatment of the algebraic approach based on Auslander-Reiten theory as well as the approach based on geometric invariant theory. The material in the opening chapters is developed starting slowly with topics such as homological algebra, Morita equivalence, and Gabriel's theorem. Next, the book presents Auslander-Reiten theory, including almost split sequences and the Auslander-Reiten transform, and gives a proof of Kac's generalization of Gabriel's theorem. Once this basic material is established, the book goes on with developing the geometric invariant theory of quiver representations. The book features the exposition of the saturation theorem for semi-invariants of quiver representations and its application to Littlewood-Richardson coefficients. In the final chapters, the book exposes tilting modules, exceptional sequences and a connection to cluster categories.

The book is suitable for a graduate course in quiver representations and has numerous exercises and examples throughout the text. The book will also be of use to experts in such areas as representation theory, invariant theory and algebraic geometry, who want learn about application of quiver representations to their fields.

Arvustused

This book serves as an introductory text on quiver representations which would allow a person without any knowledge of Artin algebras to learn the subject quickly." Queqing Chen, Mathematical Reviews

Preface ix
Chapter 1 Introduction
1(18)
§1.1 Basic Definitions and Examples
1(2)
§1.2 The Category of Quiver Representations
3(3)
§1.3 Representation Spaces
6(2)
§1.4 Indecomposable Representations
8(3)
§1.5 The Path Algebra
11(3)
§1.6 Duality
14(1)
§1.7 The Krull-Remak-Schmidt Theorem
15(2)
§1.8 Bibliographical Remarks
17(2)
Chapter 2 Homological Algebra of Quiver Representations
19(16)
§2.1 Projective and Injective Modules
19(3)
§2.2 Projective and Injective Quiver Representations
22(2)
§2.3 The Hereditary Property of Path Algebras
24(3)
§2.4 The Extensions Group
27(5)
§2.5 The Euler Form
32(2)
§2.6 Bibliographical Remarks
34(1)
Chapter 3 Finite Dimensional Algebras
35(14)
§3.1 Quivers with Relations
35(3)
§3.2 The Jacobson Radical
38(3)
§3.3 Basic Algebras
41(2)
§3.4 Morita Equivalence
43(4)
§3.5 Bibliographical Remarks
47(2)
Chapter 4 Gabriel's Theorem
49(24)
§4.1 Quivers of Finite Representation Type
50(2)
§4.2 Dynkin Graphs
52(5)
§4.3 The Reflection Functors
57(7)
§4.4 The Coxeter Functor
64(5)
§4.5 Examples
69(2)
§4.6 Bibliographical Remarks
71(2)
Chapter 5 Almost Split Sequences
73(24)
§5.1 Ideals of Morphisms in the Module Categories
73(4)
§5.2 Irreducible Morphisms
77(6)
§5.3 The Auslander-Reiten Quiver
83(3)
§5.4 The Notion of an Almost Split Sequence
86(8)
§5.5 Bibliographical Remarks
94(3)
Chapter 6 Auslander-Reiten Theory
97(20)
§6.1 Injective Envelopes and Projective Covers
97(3)
§6.2 The Transpose Functor
100(2)
§6.3 The Translation Functor for Quivers
102(1)
§6.4 Auslander-Reiten Duality
103(4)
§6.5 Coxeter Functors Revisited
107(4)
§6.6 The Auslander-Reiten Quiver for Hereditary Algebras
111(3)
§6.7 The Preprojective Algebra
114(2)
§6.8 Bibliographical Remarks
116(1)
Chapter 7 Extended Dynkin Quivers
117(14)
§7.1 Representations of the Kronecker Quiver
118(3)
§7.2 The Auslander-Reiten Quiver of the Kronecker Quiver
121(1)
§7.3 AR Quivers for other Extended Dynkin Types
122(7)
§7.4 Bibliographical Remarks
129(2)
Chapter 8 Kac's Theorem
131(18)
§8.1 Deformed Preprojective Algebras
131(5)
§8.2 Reflections
136(2)
§8.3 Root Systems
138(4)
§8.4 Quiver Representations over Finite Fields
142(5)
§8.5 Bibliographical Remarks
147(2)
Chapter 9 Geometric Invariant Theory
149(34)
§9.1 Algebraic Group Actions
150(5)
§9.2 Linearly Reductive Groups
155(7)
§9.3 The Geometry of Quotients
162(2)
§9.4 Semi-Invariants and the Sato-Kimura Lemma
164(3)
§9.5 Geometric Invariant Theory
167(2)
§9.6 The Hilbert-Mumford Criterion
169(3)
§9.7 GIT for Quiver Representations
172(4)
§9.8 GIT Quotients with Respect to Weights
176(6)
§9.9 Bibliographical Remarks
182(1)
Chapter 10 Semi-invariants of Quiver Representations
183(60)
§10.1 Background from Classical Invariant Theory
184(3)
§10.2 The Le Bruyn-Procesi Theorem
187(4)
§10.3 Background from the Representation Theory of GLn
191(6)
§10.4 Semi-invariants and Representation Theory
197(2)
§10.5 Examples for Dynkin Quivers
199(5)
§10.6 Schofield Semi-invariants
204(2)
§10.7 The Main Theorem and Saturation Theorem
206(5)
§10.8 Proof of the Main Theorem
211(5)
§10.9 Semi-invariants for Dynkin Quivers
216(2)
§10.10 Semi-invariants for Extended Dynkin Types
218(7)
§10.11 More Examples of Rings of Semi-invariants
225(6)
§10.12 Schofield Incidence Varieties
231(9)
§10.13 Bibliographical Remarks
240(3)
Chapter 11 Orthogonal Categories and Exceptional Sequences
243(44)
§11.1 Schur Representations
244(2)
§11.2 The Canonical Decomposition
246(8)
§11.3 Tilting Modules
254(5)
§11.4 Orthogonal Categories
259(7)
§11.5 Quivers with Two Vertices
266(3)
§11.6 Two Sincerity Results
269(1)
§11.7 The Braid Group Action on Exceptional Sequences
270(3)
§11.8 Examples
273(2)
§11.9 An Algorithm for the Canonical Decomposition
275(10)
§11.10 Bibliographical Remarks
285(2)
Chapter 12 Cluster Categories
287(38)
§12.1 A Combinatorial Model for Type An
288(6)
§12.2 Cluster Combinatorics and Decorated Representations
294(9)
§12.3 Triangulated Categories and Derived Categories
303(7)
§12.4 The Derived Category of Quiver Representations
310(6)
§12.5 Cluster Categories
316(2)
§12.6 Cluster Tilted Algebras
318(4)
§12.7 Bibliographical Remarks
322(3)
Notation 325(2)
Index 327(4)
Bibliography 331
Harm Derksen, University of Michigan, Ann Arbor, MI.

Jerzy Weyman, University of Connecticut, Storrs, CT.