Preface |
|
ix | |
|
|
1 | (18) |
|
§1.1 Basic Definitions and Examples |
|
|
1 | (2) |
|
§1.2 The Category of Quiver Representations |
|
|
3 | (3) |
|
§1.3 Representation Spaces |
|
|
6 | (2) |
|
§1.4 Indecomposable Representations |
|
|
8 | (3) |
|
|
11 | (3) |
|
|
14 | (1) |
|
§1.7 The Krull-Remak-Schmidt Theorem |
|
|
15 | (2) |
|
§1.8 Bibliographical Remarks |
|
|
17 | (2) |
|
Chapter 2 Homological Algebra of Quiver Representations |
|
|
19 | (16) |
|
§2.1 Projective and Injective Modules |
|
|
19 | (3) |
|
§2.2 Projective and Injective Quiver Representations |
|
|
22 | (2) |
|
§2.3 The Hereditary Property of Path Algebras |
|
|
24 | (3) |
|
§2.4 The Extensions Group |
|
|
27 | (5) |
|
|
32 | (2) |
|
§2.6 Bibliographical Remarks |
|
|
34 | (1) |
|
Chapter 3 Finite Dimensional Algebras |
|
|
35 | (14) |
|
§3.1 Quivers with Relations |
|
|
35 | (3) |
|
§3.2 The Jacobson Radical |
|
|
38 | (3) |
|
|
41 | (2) |
|
|
43 | (4) |
|
§3.5 Bibliographical Remarks |
|
|
47 | (2) |
|
Chapter 4 Gabriel's Theorem |
|
|
49 | (24) |
|
§4.1 Quivers of Finite Representation Type |
|
|
50 | (2) |
|
|
52 | (5) |
|
§4.3 The Reflection Functors |
|
|
57 | (7) |
|
|
64 | (5) |
|
|
69 | (2) |
|
§4.6 Bibliographical Remarks |
|
|
71 | (2) |
|
Chapter 5 Almost Split Sequences |
|
|
73 | (24) |
|
§5.1 Ideals of Morphisms in the Module Categories |
|
|
73 | (4) |
|
§5.2 Irreducible Morphisms |
|
|
77 | (6) |
|
§5.3 The Auslander-Reiten Quiver |
|
|
83 | (3) |
|
§5.4 The Notion of an Almost Split Sequence |
|
|
86 | (8) |
|
§5.5 Bibliographical Remarks |
|
|
94 | (3) |
|
Chapter 6 Auslander-Reiten Theory |
|
|
97 | (20) |
|
§6.1 Injective Envelopes and Projective Covers |
|
|
97 | (3) |
|
§6.2 The Transpose Functor |
|
|
100 | (2) |
|
§6.3 The Translation Functor for Quivers |
|
|
102 | (1) |
|
§6.4 Auslander-Reiten Duality |
|
|
103 | (4) |
|
§6.5 Coxeter Functors Revisited |
|
|
107 | (4) |
|
§6.6 The Auslander-Reiten Quiver for Hereditary Algebras |
|
|
111 | (3) |
|
§6.7 The Preprojective Algebra |
|
|
114 | (2) |
|
§6.8 Bibliographical Remarks |
|
|
116 | (1) |
|
Chapter 7 Extended Dynkin Quivers |
|
|
117 | (14) |
|
§7.1 Representations of the Kronecker Quiver |
|
|
118 | (3) |
|
§7.2 The Auslander-Reiten Quiver of the Kronecker Quiver |
|
|
121 | (1) |
|
§7.3 AR Quivers for other Extended Dynkin Types |
|
|
122 | (7) |
|
§7.4 Bibliographical Remarks |
|
|
129 | (2) |
|
|
131 | (18) |
|
§8.1 Deformed Preprojective Algebras |
|
|
131 | (5) |
|
|
136 | (2) |
|
|
138 | (4) |
|
§8.4 Quiver Representations over Finite Fields |
|
|
142 | (5) |
|
§8.5 Bibliographical Remarks |
|
|
147 | (2) |
|
Chapter 9 Geometric Invariant Theory |
|
|
149 | (34) |
|
§9.1 Algebraic Group Actions |
|
|
150 | (5) |
|
§9.2 Linearly Reductive Groups |
|
|
155 | (7) |
|
§9.3 The Geometry of Quotients |
|
|
162 | (2) |
|
§9.4 Semi-Invariants and the Sato-Kimura Lemma |
|
|
164 | (3) |
|
§9.5 Geometric Invariant Theory |
|
|
167 | (2) |
|
§9.6 The Hilbert-Mumford Criterion |
|
|
169 | (3) |
|
§9.7 GIT for Quiver Representations |
|
|
172 | (4) |
|
§9.8 GIT Quotients with Respect to Weights |
|
|
176 | (6) |
|
§9.9 Bibliographical Remarks |
|
|
182 | (1) |
|
Chapter 10 Semi-invariants of Quiver Representations |
|
|
183 | (60) |
|
§10.1 Background from Classical Invariant Theory |
|
|
184 | (3) |
|
§10.2 The Le Bruyn-Procesi Theorem |
|
|
187 | (4) |
|
§10.3 Background from the Representation Theory of GLn |
|
|
191 | (6) |
|
§10.4 Semi-invariants and Representation Theory |
|
|
197 | (2) |
|
§10.5 Examples for Dynkin Quivers |
|
|
199 | (5) |
|
§10.6 Schofield Semi-invariants |
|
|
204 | (2) |
|
§10.7 The Main Theorem and Saturation Theorem |
|
|
206 | (5) |
|
§10.8 Proof of the Main Theorem |
|
|
211 | (5) |
|
§10.9 Semi-invariants for Dynkin Quivers |
|
|
216 | (2) |
|
§10.10 Semi-invariants for Extended Dynkin Types |
|
|
218 | (7) |
|
§10.11 More Examples of Rings of Semi-invariants |
|
|
225 | (6) |
|
§10.12 Schofield Incidence Varieties |
|
|
231 | (9) |
|
§10.13 Bibliographical Remarks |
|
|
240 | (3) |
|
Chapter 11 Orthogonal Categories and Exceptional Sequences |
|
|
243 | (44) |
|
§11.1 Schur Representations |
|
|
244 | (2) |
|
§11.2 The Canonical Decomposition |
|
|
246 | (8) |
|
|
254 | (5) |
|
§11.4 Orthogonal Categories |
|
|
259 | (7) |
|
§11.5 Quivers with Two Vertices |
|
|
266 | (3) |
|
§11.6 Two Sincerity Results |
|
|
269 | (1) |
|
§11.7 The Braid Group Action on Exceptional Sequences |
|
|
270 | (3) |
|
|
273 | (2) |
|
§11.9 An Algorithm for the Canonical Decomposition |
|
|
275 | (10) |
|
§11.10 Bibliographical Remarks |
|
|
285 | (2) |
|
Chapter 12 Cluster Categories |
|
|
287 | (38) |
|
§12.1 A Combinatorial Model for Type An |
|
|
288 | (6) |
|
§12.2 Cluster Combinatorics and Decorated Representations |
|
|
294 | (9) |
|
§12.3 Triangulated Categories and Derived Categories |
|
|
303 | (7) |
|
§12.4 The Derived Category of Quiver Representations |
|
|
310 | (6) |
|
|
316 | (2) |
|
§12.6 Cluster Tilted Algebras |
|
|
318 | (4) |
|
§12.7 Bibliographical Remarks |
|
|
322 | (3) |
Notation |
|
325 | (2) |
Index |
|
327 | (4) |
Bibliography |
|
331 | |