Muutke küpsiste eelistusi

E-raamat: Introduction to Radiation Protection in Medicine

Edited by (Queensland University of Technology, Brisbane, Australia), Edited by (Peter MacCullum Cancer Centre, Melbourne, Australia)
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 126,09 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Combining facets of health physics with medicine, An Introduction to Radiation Protection in Medicine covers the background of the subject and the medical situations where radiation is the tool to diagnose or treat human disease. Encouraging newcomers to the field to properly and efficiently function in a versatile and evolving work setting, it familiarizes them with the particular problems faced during the application of ionizing radiation in medicine.

The text builds a fundamental knowledge base before providing practical descriptions of radiation safety in medicine. It covers basic issues related to radiation protection, including the physical science behind radiation protection and the radiobiological basis of radiation protection. The text also presents operational and managerial tools for organizing radiation safety in a medical workplace. Subsequent chapters form the core of the book, focusing on the practice of radiation protection in different medical disciplines. They explore a range of individual uses of ionizing radiation in various branches of medicine, including radiology, nuclear medicine, external beam radiotherapy, and brachytherapy.

With contributions from experienced practicing physicists, this book provides essential information about dealing with radiation safety in the rapidly shifting and diverse environment of medicine.

Arvustused

"The text builds a fundamental knowledge base before providing practical descriptions of radiation safety in medicine . . . With contributions from experienced practicing physicists, this book provides essential information about dealing with radiation safety in the rapidly shifting and diverse environment of medicine."

In Anticancer Research, Nov/Dec 2008, Vol. 28, No. 6B

About the Series vii
Preface ix
Editors/Contributors xi
Introduction
1(18)
Tomas Kron
Outline and Objective of the Book
1(2)
Overview of the Use of Ionizing Radiation in Medicine
3(3)
Diagnostics
4(1)
Therapy
5(1)
Some Basic Background
6(3)
Natural Radiation
6(1)
Quantities for Radiation Protection
7(1)
External and Internal Radiation Exposure
8(1)
The Radiation Warning Sign
9(1)
The Framework of the 1990 Recommendations of the ICRP
9(4)
The ICRP
9(2)
Types of Radiation Exposure
11(1)
Principles of Radiation Protection
11(1)
Justification of Practice
11(1)
Optimization of Protection
12(1)
Individual Dose and Risk Limits
12(1)
Organizing Radiation Protection in a Medical Environment
13(6)
A Radiation Protection Program
14(2)
Radiation Safety Manual
16(1)
References
16(3)
Fundamentals of Radiation Physics
19(18)
Jamie V. Trapp
Peter Johnston
Origins of Radiation
20(4)
Nuclear Structure
20(1)
Decay Rates and Half-Life
21(2)
Electromagnetic Radiation
23(1)
Alpha Radiation
23(1)
Beta Radiation
23(1)
Radiation Interactions and Energy Deposition in Matter
24(7)
Photons
24(4)
Alpha Particles
28(1)
Beta Particles
29(1)
Neutrons
30(1)
Units in Radiation Protection
31(6)
Absorbed Dose
31(1)
Exposure Units
32(1)
Equivalent and Effective Dose
32(1)
Equivalent Dose
32(2)
Effective Dose
34(1)
Other Units and Quantities
35(1)
Committed Dose, Committed Equivalent Dose, and Committed Effective Dose
35(1)
Collective Equivalent Dose and Collective Effective Dose
36(1)
References
36(1)
Radiation and Risk: Radiobiological Background
37(34)
Tomas Kron
Effects of Radiation on Cells
39(9)
Timescale of Radiation Effects on Living Organisms
39(1)
What Happens in the First Pico Seconds after Irradiation of Cells?
39(5)
Repair
44(3)
Bystanders, Genomic Instability, and Adaptive Responses
47(1)
Effects of Radiation on Humans
48(4)
Deterministic Effects
48(2)
Stochastic Effects
50(1)
Hereditary Effects and Irradiation in Utero
51(1)
Cancer Induction
52(5)
What Defines Cancer?
52(2)
Epidemiology
54(3)
Risk Estimates
57(14)
Orders of Magnitude
59(2)
Models of Cell Kill
61(1)
Linear No-Threshold Model
62(2)
Estimating Risk
64(2)
Acknowledgment
66(1)
References
66(5)
Radiation Detection and Simulation Methods
71(12)
Jamie V. Trapp
Peter Johnston
Radiation Detection Methods
72(8)
Gas-Filled Detectors
72(2)
Scintillation Detectors
74(3)
Semiconductor Detectors
77(1)
Thermoluminescent Dosimeters
77(1)
Film
78(1)
Chemical and Gel Dosimeters
79(1)
Neutron Detection Methods
79(1)
Radiation Simulations through Monte Carlo Modeling
80(3)
References
82(1)
Managing Radiation in the Workplace
83(14)
Peter Johnston
Jamie V. Trapp
Tomas Kron
Exposure Categories in the Recommendations of the ICRP
84(1)
Control of Exposures
85(8)
Administrative Considerations
86(2)
Engineering Considerations
88(1)
Supervised and Controlled Areas
88(1)
General Principles for Shielding of Radiation Facilities
89(1)
Quality Assurance of Equipment and Procedures
90(3)
Monitoring
93(4)
External Gamma-Ray Exposure
93(1)
Extremity Dose
94(1)
Radioactive Contamination
95(1)
Environmental Monitoring
95(1)
Neutron Monitoring
95(1)
References
96(1)
Radiation Protection in Diagnostic and Interventional Radiology
97(48)
John Heggie
Introductory Comments about the Type of Radiation Involved, Its Production, and Its Use
98(4)
Production of Diagnostic X-Rays
98(3)
Energy Range of Relevance
101(1)
X-Ray Tube Shielding and Primary Beam Definition
101(1)
Protection of the Patient
102(26)
General Protection Principles
102(1)
Justification
102(1)
Optimization
103(4)
Quality Assurance
107(1)
Diagnostic Reference Levels
108(2)
Specific Protection Issues Relating to General and Dental Radiography
110(1)
Specific Protection Issues Relating to Computed Radiography and Digital Radiography
110(1)
Specific Protection Issues Relating to Fluoroscopy
110(3)
Specific Protection Issues Relating to Interventional Radiology
113(2)
Specific Protection Issues Relating to Computed Tomography
115(5)
Specific Protection Issues Relating to High-Risk Groups
120(1)
Pregnant or Potentially Pregnant Women
120(2)
Pediatrics
122(1)
Dose Calculations for Patients
123(1)
Basic Principles
123(3)
Dose Calculators
126(2)
Protection of Occupationally Exposed Individuals and the Public
128(5)
Recognition and Avoidance of Hazards
128(2)
Specific Issues for Cardiology and Interventional Radiology
130(2)
Specific Issues for CT Fluoroscopy (Finger Doses)
132(1)
Personal Protective Equipment
133(1)
Shielding Issues
133(12)
Basic Concepts
133(3)
General/Fluoroscopy Installations
136(1)
Mammography Installations
137(1)
Computed Tomography
137(2)
Dental Units
139(1)
References
139(6)
Radiation Protection in Nuclear Medicine
145(26)
Raymond Budd
Introduction to Nuclear Medicine
146(3)
Fundamental Concepts
146(1)
Properties of Currently Used Radionuclides
147(2)
Handling of Radioactive Materials
149(4)
Safety Issues
149(1)
Methods for Limiting Exposure to External Hazards
149(2)
Methods for Limiting Exposure to Internal Hazards
151(2)
Radiation Dosimetry
153(8)
Calculation of Radiation Dose to Staff
153(2)
Calculation of Radiation Dose to the Patient
155(3)
Radionuclide Diagnostic Reference Activities
158(1)
Implications of Pregnancy for Patients and Staff
159(1)
Pregnant Patients
159(1)
Pregnant Staff
160(1)
Maladministration of a Radiopharmaceutical
160(1)
Overview of Department Design Requirements
161(2)
Laboratory Protection Equipment
161(1)
Imaging and Laboratory Rooms
161(1)
Radionuclide Therapy Rooms
162(1)
PET and PET-CT Facilities
162(1)
Environmental Safety Considerations
163(8)
Special Considerations Governing the Discharge of Patients
163(1)
Disposal of a Radioactive Corpse
163(1)
Transport and Storage of Radioactive Material
164(1)
Disposal of Radioactive Waste
164(1)
Delay and Decay
164(1)
Dilute and Disperse
165(1)
Concentrate and Contain
165(1)
Accident Contingency Plans
165(1)
Treat
166(1)
Delineate
166(1)
Contain
166(1)
Decontaminate
166(1)
Report
167(1)
Mandatory Record Keeping
167(1)
References
167(4)
Radiation Protection in External Beam Radiotherapy
171(34)
Jim Cramb
Introduction
172(1)
Production of Radiation Beams Used for Radiotherapy
173(4)
Linear Accelerators
173(1)
Cobalt-60 Units
174(1)
Kilovoltage Therapy Units: ``Superficial'' and ``Deep'' Therapy
175(1)
Radiotherapy Simulators, CT Scanners, and CT Simulators
176(1)
Tomotherapy
176(1)
Proton Therapy
177(1)
Design of Treatment and Imaging Facilities
177(16)
Exposure Limits and Constraints, Legislative Requirements
177(1)
Linear Accelerator Bunkers
178(2)
Primary Barriers
180(2)
Secondary Barriers, Mazes, and Bunker Geometry
182(1)
Neutrons
183(1)
Other Considerations
184(1)
Design Constraints: Calculating Barrier Thicknesses
185(6)
Kilovoltage, CT Simulator, and CT Rooms
191(2)
Tomotherapy Bunkers
193(1)
Radiation Surveys
193(2)
Other Acceptance Tests Relating to Safety
195(1)
Head Leakage
195(1)
Treatment Accessories
196(1)
Emergency Off Buttons
196(1)
Patient Safety
196(2)
Treatment Planning
197(1)
Equipment Design
198(1)
Miscellaneous Radiation Protection Issues
198(2)
A Cobalt Source Becomes Stuck in the ``On'' Position
198(1)
Activation of Materials Due to Neutrons from High-Energy X-Ray Units
199(1)
Accidental Irradiation of Persons in a Bunker
200(1)
Shielding for Intensity-Modulated Radiotherapy (IMRT)
200(1)
Ongoing Quality Assurance
200(5)
Safety Checks
200(1)
Radiation Surveys
201(1)
Staff Monitoring
201(1)
Staff Education
202(1)
Radiation Incident Reporting
202(1)
References
202(3)
Radiation Protection in Brachytherapy
205(50)
Ram Das
Introduction
206(15)
Radiation Sources Used in Brachytherapy
207(1)
Modes of Brachytherapy Delivery
207(4)
Afterloading Systems
211(1)
Remote Afterloading Equipment: Low- and High-Dose-Rate Brachytherapy
212(1)
Low-Dose-Rate Units
212(1)
High-Dose-Rate Units
213(3)
Applications of Brachytherapy
216(1)
Intracavitary Applications
216(1)
Interstitial Implants
217(2)
Intraluminal Applications
219(1)
Mould Applicators
219(1)
Intraoperative/Perioperative Brachytherapy
220(1)
Other Applications
220(1)
Potential Radiation Hazards in Brachytherapy
221(4)
Patients
221(1)
Personnel Training and Supervision
222(1)
Hazards to Staff
223(1)
Exposure to the Public
224(1)
Burial or Cremation
224(1)
Medical Emergencies
225(1)
Radiation Safety Measures in Brachytherapy
225(12)
Brachytherapy Facilities
225(1)
Low-Dose-Rate Brachytherapy Treatment Rooms
226(1)
LDR Brachytherapy Treatment Room Shielding Design
226(3)
High-Dose-Rate Brachytherapy Treatment Rooms
229(2)
Other Sources
231(1)
Treatment Planning
232(1)
Patient Preparation
232(1)
Catheter Placement
233(1)
Imaging
233(1)
Dosimetry
234(1)
Treatment
234(1)
Written Procedures
234(1)
Imaging and Planning Procedures
235(1)
Treatment Planning
235(1)
Treatment Procedures
235(1)
Redundancy Checks
236(1)
Emergency Procedures
236(1)
Quality Assurance
237(2)
Low-Dose-Rate Brachytherapy
237(1)
Acceptance Tests
237(1)
Inventory
237(1)
HDR Brachytherapy
238(1)
Acceptance Tests
238(1)
Regular QA Checks
238(1)
Source Strength
238(1)
Applicators and Catheters
238(1)
Planning Computers
238(1)
Imaging Systems
239(1)
Transport of Radioactive Substances
239(16)
Transport to and from the Hospital
239(2)
Transport of Brachytherapy Sources within the Hospital
241(1)
References
241(2)
Appendix A: LDR Brachytherapy Planning
243(2)
Appendix B: Ir-192 HDR Treatment
245(2)
Appendix C: Patient Card
247(1)
Appendix D: Emergency Procedures for the Microselectron HDR Unit
248(1)
Appendix E: Sample Check Sheet: Commissioning/Annual QA Tests for HDR Treatment Unit
249(6)
Outlook and Conclusion
255(8)
Tomas Kron
Will There Be Need for Radiation in the Future?
255(2)
New Challenges in Radiation Protection
257(3)
Physical and Technological Challenges for Radiation Protection
257(1)
Radiobiological Challenges for Radiation Protection
258(1)
Societal and Ethical Challenges for Radiation Protection
259(1)
Future Trends?
260(3)
Research Needs for Radiation Protection
260(1)
Fundamental Safety Principles
260(1)
References
261(2)
Glossary 263(8)
Index 271
Jamie V. Trapp, Tomas Kron