Muutke küpsiste eelistusi

E-raamat: Introduction to Renewable Energy Conversions

(Texas A&M University, College Station, USA)
  • Formaat: 456 pages
  • Ilmumisaeg: 07-Aug-2019
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9780429583421
  • Formaat - PDF+DRM
  • Hind: 143,00 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 456 pages
  • Ilmumisaeg: 07-Aug-2019
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9780429583421

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Introduction to Renewable Energy Conversions examines all the major renewable energy conversion technologies with the goal of enabling readers to formulate realistic resource assessments. The text provides step-by-step procedures for assessing renewable energy options and then moves to the design of appropriate renewable energy strategies. The goal is for future engineers to learn the process of making resource estimates through the introduction of more than 140 solved problems and over 165 engineering related equations. More than 120 figures and numerous tables explain each renewable energy conversion type. A solutions manual, PowerPoint slides, and lab exercises are available for instructors.

Key Features











Covers all major types of renewable energy with comparisons for use in energy systems





Builds skills for evaluating energy usage versus environmental hazards and climate change factors





Presents and explains the key engineering equations used to design renewable energy systems





Uses a practical approach to design and analyze renewable energy conversions





Offers a solutions manual, PowerPoint slides, and lab activity plans for instructors
List of Figures xix
List of Tables xxv
Foreword xxvii
Preface xxix
Acknowledgments xxxi
Author xxxiii
1 Introduction to Renewable Energy 1(28)
1.1 Introduction
1(1)
1.2 Advantages and Disadvantages of the Use of Renewable Energy Resources
2(1)
1.2.1 Advantages
2(1)
1.2.2 Disadvantages
2(1)
1.3 Renewable Energy Resources
3(19)
1.3.1 Solar Energy
3(3)
1.3.2 Wind Energy
6(1)
1.3.3 Biomass Energy
7(2)
1.3.4 Hydro Power
9(2)
1.3.5 Geothermal Energy
11(4)
1.3.6 Salinity Gradient
15(1)
1.3.7 Fuel Cells
15(1)
1.3.8 Tidal Energy
16(2)
1.3.9 Wave Energy
18(1)
1.3.10 Ocean Thermal Energy Conversion Systems
19(1)
1.3.11 Human, Animal, and Piezoelectric Power
20(1)
1.3.12 Cold Fusion and Gravitational Field Energy
21(1)
1.4 Renewable Energy Conversion Efficiencies
22(1)
1.5 Renewable Energy Resources-Why?
23(1)
1.6 Summary and Conclusion
24(1)
1.7 Problems
24(2)
1.7.1 Carbon Dioxide Required to Make Carbohydrates
24(1)
1.7.2 Kinetic Energy of a Mass of Wind
25(1)
1.7.3 Carbon Dioxide Production during Ethanol Fermentation
25(1)
1.7.4 Theoretical and Actual Power from Water Stream
25(1)
1.7.5 Theoretical Thermal Conversion Efficiency of Rankine Cycle
25(1)
1.7.6 Fuel Cell Efficiencies
25(1)
1.7.7 Tidal Power Calculations
25(1)
1.7.8 Solar Water Heater Conversion Efficiency
25(1)
1.7.9 OTEC Energy Conversion
26(1)
1.7.10 Solar PV Conversion Efficiency
26(1)
References
26(3)
2 Solar Energy 29(34)
2.1 Introduction
29(1)
2.2 The Solar Constant and Extraterrestrial Solar Radiation
30(1)
2.3 Actual Solar Energy Received on the Earth's Surface
31(1)
2.4 Solar Energy Measuring Instruments
32(1)
2.5 Solar Time
33(2)
2.6 Geometric Nomenclatures for Solar Resource Calculations
35(5)
2.7 Extraterrestrial Solar Radiation on a Horizontal Surface
40(2)
2.8 Available Solar Radiation on a Particular Location
42(3)
2.9 Solar Energy Conversion Devices
45(10)
2.9.1 Solar Thermal Conversion Devices
45(5)
2.9.1.1 Solar Refrigerators
45(2)
2.9.1.2 Solar Dryers
47(2)
2.9.1.3 Solar Water Heaters
49(1)
2.9.2 Solar Photovoltaic (PV) Systems
50(2)
2.9.3 Solar Thermal Electric Power Systems
52(1)
2.9.4 Solar Thermal Power Systems with Distributed Collectors
53(1)
2.9.5 Solar Thermal Power Systems with Distributed Collectors and Generators
53(1)
2.9.6 High-Temperature Solar Heat Engines
54(1)
2.10 Solar Collector System Sizing
55(2)
2.11 Economics of Solar Conversion Devices
57(2)
2.12 Summary and Conclusions
59(1)
2.13 Problems
60(1)
2.13.1 Extraterrestrial Solar Radiation
60(1)
2.13.2 Solar Time
60(1)
2.13.3 Solar Declination Angle
60(1)
2.13.4 Angle of Incidence
60(1)
2.13.5 Hour Angle, Time of Sunrise, and Number of Daylight Hours
60(1)
2.13.6 Theoretical Daily Solar Radiation, Ho
60(1)
2.13.7 Theoretical Hourly Solar Radiation
61(1)
2.13.8 Clearness Index to Estimate Beam and Diffuse Radiation
61(1)
2.13.9 Sizing Solar PV Panels
61(1)
2.13.10 Economics of Solar Energy
61(1)
References
61(2)
3 Wind Energy 63(30)
3.1 Introduction
63(2)
3.2 Basic Energy and Power Calculation from the Wind
65(4)
3.3 The Worldwide Wind Energy Potential
69(1)
3.4 The Actual Energy and Power from the Wind
69(3)
3.5 Actual Power from the Wind
72(1)
3.6 Windmill Classification
73(2)
3.6.1 Classification according to Speed
73(1)
3.6.1.1 High-Speed Windmills
73(1)
3.6.1.2 Low-Speed Windmills
73(1)
3.6.2 Classification according to Position of Blades
73(1)
3.6.2.1 Upwind Windmills
73(1)
3.6.2.2 Downwind Windmills
74(1)
3.6.3 Classification according to Orientation of Blade Axis
74(3)
3.6.3.1 Vertical Axis Windmills
74(1)
3.6.3.2 Horizontal Axis Windmills
74(1)
3.7 Wind Speed Measuring Instruments
75(2)
3.8 Wind Power and Energy Calculations from Actual Wind Speed Data
77(7)
3.8.1 The Rayleigh Distribution
77(3)
3.8.2 The Weibull Distribution
80(4)
3.9 Wind Design Parameters
84(4)
3.9.1 Cut-In, Cut-Out, and Rated Wind Speed
84(1)
3.9.2 General Components of Horizontal Axis Windmills for Power Generation
84(2)
3.9.3 Wind Speed Variations with Height
86(1)
3.9.4 Wind Capacity Factor and Availability
87(1)
3.10 Comparative Cost of Power of Wind Machines
88(1)
3.11 Conclusion
89(1)
3.12 Problems
90(1)
3.12.1 Kinetic Energy from Wind
90(1)
3.12.2 Power from the Wind
90(1)
3.12.3 Power Differential as Wind Speed Is Doubled
90(1)
3.12.4 Actual Power from Windmill
90(1)
3.12.5 Rayleigh Distribution Estimate
90(1)
3.12.6 Estimating Average Wind Speed from Rayleigh Distribution
91(1)
3.12.7 Average Wind Velocity for a Given Site and Hours of Occurrence
91(1)
3.12.8 Estimate Weibull Parameters k and c from Linear Regression Data
91(1)
3.12.9 Wind Speed at Different Elevation
91(1)
3.12.10 Payback Period for Wind Machine
91(1)
References
91(2)
4 Biomass Energy 93(28)
4.1 Introduction
93(2)
4.2 Sources of Biomass for Heat, Fuel, and Electrical Power Production
95(2)
4.2.1 Municipal Solid Wastes
95(1)
4.2.2 Municipal Sewage Sludge
96(1)
4.2.3 Animal Manure
96(1)
4.2.4 Ligno-Cellulosic Crop Residues
97(1)
4.3 Biomass Resources That May Have Competing Requirements
97(2)
4.3.1 Oil Crops
97(1)
4.3.2 Sugar and Starchy Crops
98(1)
4.3.3 Fuel Wood
98(1)
4.3.4 Aquatic Biomass
98(1)
4.4 Various Biomass Conversion Processes
99(14)
4.4.1 Physico-Chemical Conversion Processes
99(3)
4.4.1.1 Biodiesel Production
99(3)
4.4.2 Biological Conversion Processes
102(5)
4.4.2.1 Bio-Ethanol Production
102(2)
4.4.2.2 Biogas Production
104(3)
4.4.3 Thermal Conversion Processes
107(6)
4.4.3.1 Pyrolysis
107(1)
4.4.3.2 Gasification
108(2)
4.4.3.3 Eutectic Point of Biomass
110(2)
4.4.3.4 Combustion Processes
112(1)
4.5 Economics of Heat, Fuel, and Electrical Power Production from Biomass
113(2)
4.5.1 Biodiesel Economics
113(1)
4.5.2 Ethanol Economics
114(1)
4.6 Sustainability Issues with Biomass Energy Use
115(1)
4.7 Conclusion
116(1)
4.8 Problems
116(2)
4.8.1 Area Required to Build a Power Plant
116(1)
4.8.2 Electrical Power from MSW
117(1)
4.8.3 Feedstock Requirement for a 3 MGY Biodiesel Plant
117(1)
4.8.4 Sugar Needed to Produce Ethanol
117(1)
4.8.5 Biogas Digester Sizing
117(1)
4.8.6 Residence Time for Biomass Conversion in Fluidized Bed Reactors
117(1)
4.8.7 Chemical Formula for Biomass
117(1)
4.8.8 Air-to-Fuel Ratio (AFR) Calculations
118(1)
4.8.9 Eutectic Point of Biomass
118(1)
4.8.10 Area Needed for Wood Power
118(1)
References
118(3)
5 Hydro Power 121(32)
5.1 Introduction
121(2)
5.2 Power from Water
123(2)
5.3 Inefficiencies in Hydro Power Plants
125(2)
5.4 Basic Components of a Hydro Power Plant
127(2)
5.5 Water Power-Generating Devices
129(5)
5.5.1 Water Wheels and Tub Wheels
130(1)
5.5.2 Turbines
130(1)
5.5.3 Specific Speeds for Turbines
131(1)
5.5.4 Turbine Selection
132(2)
5.6 Hydraulic Ram
134(7)
5.6.1 Construction and Principles of Operation
134(2)
5.6.2 Hydraulic Ram Calculations
136(2)
5.6.3 Design Procedures for Commercial Rife Rams
138(1)
5.6.4 Specifying Pipe Sizes and Discharge Pipe Lengths
139(1)
5.6.5 Starting Operation Procedure for Hydraulic Rams
140(1)
5.6.6 Troubleshooting Hydraulic Rams
141(1)
5.7 Types of Hydro Power Plant
141(8)
5.7.1 On the Basis of Operation
141(1)
5.7.2 Based on Plant Capacity
142(1)
5.7.3 Based on Head
142(1)
5.7.4 Based on Hydraulic Features
142(5)
5.7.4.1 Conventional
142(1)
5.7.4.2 Pumped Storage Systems
142(5)
5.7.5 Based on Construction Features
147(2)
5.8 Environmental and Economic Issues
149(1)
5.9 Conclusions
150(1)
5.10 Problems
150(2)
5.10.1 Theoretical Power from Water
150(1)
5.10.2 Actual Efficiencies of Micro Hydro Units
151(1)
5.10.3 Hydro Power Plant Calculations
151(1)
5.10.4 Pump Specific Speed
151(1)
5.10.5 Volumetric Efficiency of Hydraulic Rams
151(1)
5.10.6 Energy Efficiency of Hydraulic Rams
151(1)
5.10.7 Specifying Drive Pipe Size and Lengths
151(1)
5.10.8 Specifying Drive Pipe Size Using Rife Ram
151(1)
5.10.9 Pumped Storage Power Production
152(1)
5.10.10 Pumped Storage Power Production Water Use
152(1)
References
152(1)
6 Geothermal Energy 153(36)
6.1 Introduction
153(1)
6.2 Temperature Profile in Earth's Core
154(4)
6.3 Geothermal Resource Systems
158(2)
6.3.1 Liquid-Dominated Systems
158(1)
6.3.2 Vapor-Dominated Systems
159(1)
6.3.3 Hot Dry Rock Systems
159(1)
6.3.4 Geo-Pressure Systems
159(1)
6.4 Geothermal Resource Potential in Texas
160(1)
6.5 Geothermal Power Cycles
161(7)
6.5.1 Analysis of the Thermodynamic Cycle (Exell, 1983)
162(1)
6.5.2 Energy Flows or First Law Analysis
163(5)
6.6 Geothermal Heat Pumps
168(6)
6.6.1 Geothermal Heat Pump (Opposite of Refrigeration)
171(3)
6.7 Geothermal Power Cycles
174(6)
6.7.1 Non-Condensing Cycle
174(1)
6.7.2 Straight Condensing Cycle
175(2)
6.7.3 Indirect Condensing Cycle
177(1)
6.7.4 Single Flash System
177(1)
6.7.5 Double Flash System
177(1)
6.7.6 Binary Fluid Cycle
178(2)
6.8 Geothermal Power Applications
180(2)
6.9 Levelized Cost of Selected Renewable Technologies
182(1)
6.10 Environmental Effects of Geothermal Power Systems
183(1)
6.11 Conclusion
184(1)
6.12 Problems
185(2)
6.12.1 Well Selection
185(1)
6.12.2 The Ideal Rankine Cycle
185(1)
6.12.3 Efficiency of Ideal Geothermal Cycle
185(1)
6.12.4 Changes in Efficiency and Power Output
186(1)
6.12.5 COP of Ideal Refrigeration Cycle
186(1)
6.12.6 Ideal Vapor Refrigeration System
186(1)
6.12.7 Power Consumed in Heat Pump
186(1)
6.12.8 Cost Comparison
187(1)
6.12.9 Number of Households Served by Geothermal Facility
187(1)
6.12.10 ROI of Geothermal Heating and Cooling
187(1)
References
187(2)
7 Salinity Gradient 189(22)
7.1 Introduction
189(1)
7.2 The Solar Pond
190(4)
7.2.1 Advantages
193(1)
7.2.2 Disadvantages
194(1)
7.3 Energy of Sea Water for Desalination
194(1)
7.4 Pressure-Retarded Osmosis (PRO)
195(3)
7.4.1 PRO Standalone Power Plants (Statkraft, Netherlands, 2006)
197(1)
7.4.2 Statkraft Prototype (Norway, Co.)
197(1)
7.5 Reverse Electro-Dialysis (RED)
198(3)
7.6 Specific Applications or Locations
201(1)
7.7 Limitations and Factors Affecting Performance and Feasibility
202(1)
7.8 Performance and Costs
203(1)
7.9 Potential Energy and Barriers to Large-Scale Development
204(1)
7.10 Environmental and Ecological Barriers
205(1)
7.11 Conclusions
206(1)
7.12 Problems
206(2)
7.12.1 Sensible Heat from Solar Pond
206(1)
7.12.2 Theoretical Carnot Cycle Efficiency
207(1)
7.12.3 Osmotic Pressure Calculations
207(1)
7.12.4 Work Done against Pressure
207(1)
7.12.5 Energy Required to Boil Seawater
207(1)
7.12.6 Size of PRO Unit to Generate Given Power
207(1)
7.12.7 Amount of Membrane to Use to Generate Power for a Household
207(1)
7.12.8 RED Salinity Gradient System
207(1)
7.12.9 Cost of RED Power Plants
208(1)
7.12.10 Simple Payback Period for Salinity Gradient Power Plant
208(1)
References
208(3)
8 Fuel Cells 211(28)
8.1 Introduction
211(4)
8.2 The Various Types of Fuel Cells
215(9)
8.2.1 Proton Exchange Membrane Fuel Cells
215(1)
8.2.2 High-Temperature Proton Exchange Membrane Fuel Cell
216(1)
8.2.3 Direct Methanol Fuel Cell
216(1)
8.2.4 Alkaline Electrolyte Fuel Cell
217(1)
8.2.5 Phosphoric Acid Fuel Cell
218(1)
8.2.6 Solid Oxide Fuel Cell, High Temperature
219(1)
8.2.7 Solid Acid Fuel Cell
220(1)
8.2.8 Molten Carbonate Fuel Cell, High Temperature
220(1)
8.2.9 Regenerative Fuel Cell
221(1)
8.2.10 Solid Polymer Fuel Cell
222(1)
8.2.11 Zinc-Air Fuel Cell
222(1)
8.2.12 Microbial Fuel Cell
223(1)
8.2.13 Other Fuel Cells: Biological, Formic Acid, Redox Flow and Metal/Air Fuel Cells
224(1)
8.3 Data for the Different Major Types of Fuel Cells
224(1)
8.4 Various Fuels Used for Fuel Cells and Issues
225(1)
8.5 Advantages and Disadvantages of Fuel Cells
226(1)
8.6 Balance of Plant
227(1)
8.7 Existing and Emerging Markets for Fuel Cells
228(5)
8.7.1 NASA Helios Unmanned Aviation Vehicle
229(1)
8.7.2 Naval Research Lab Spider Lion
229(2)
8.7.3 The PEMFC Commercial Fuel Cell Module by Ballard (NEXA TM 1.2kW)
231(1)
8.7.4 Heliocentris Fuel Cell System
232(1)
8.8 The Future of the Fuel Cell
233(1)
8.9 Conclusions
233(1)
8.10 Problems
234(2)
8.10.1 Conversion Efficiency of a Direct Methane Fuel Cell
234(1)
8.10.2 Maximum Conversion Efficiency for a Direct Methane Fuel Cell
234(1)
8.10.3 Heat Energy Losses in a Direct Methane Fuel Cell
234(1)
8.10.4 Hydrogen Needed (in kg) to Produce a Liter of Water
235(1)
8.10.5 Potassium Carbonate Produced in an Alkaline Fuel Cell
235(1)
8.10.6 Ideal Water and Carbon Dioxide Produced for a Direct Methane Fuel Cell
235(1)
8.10.7 Zinc Needed for Every Tonne Zinc Oxide Produced in a Zinc-Air Fuel Cell
235(1)
8.10.8 Practical Conversion Efficiency for a Direct Methanol Fuel Cell
235(1)
8.10.9 Efficiency of a Spider Lion Fuel Cell
235(1)
8.10.10 Efficiency of a Commercial Fuel Cell
236(1)
References
236(3)
9 Tidal Energy 239(26)
9.1 Introduction
239(3)
9.2 Worldwide Potential of Tidal Energy
242(3)
9.3 How Tidal Energy Works
245(2)
9.4 Tidal Power Generation Schemes
247(9)
9.4.1 Single-Basin Ebb Cycle Power Generation
248(2)
9.4.2 Single-Basin Tide Cycle Power Generation
250(2)
9.4.3 Single-Basin Two-Way Power Generation
252(1)
9.4.4 Double-Basin Systems
253(3)
9.5 Other Tidal Power Generating Methods
256(2)
9.6 Cost of Tidal Energy Systems
258(1)
9.7 Environmental Concerns
259(1)
9.7.1 Beneficial
259(1)
9.7.2 Non-Beneficial
259(1)
9.8 Conclusions
260(1)
9.9 Problems
260(2)
9.9.1 Variation of Tide Level with Time Using Sine Curve
260(1)
9.9.2 Reservoir Volume Calculation
261(1)
9.9.3 Time to Release Water from Reservoir
261(1)
9.9.4 Power from Tidal Reservoir
261(1)
9.9.5 Energy from Tidal Reservoir
261(1)
9.9.6 Matching Household Energy Requirements
261(1)
9.9.7 Water Level Decline with Time for a Given Basin
261(1)
9.9.8 Power Generated from Small Basin
262(1)
9.9.9 Power and Energy from Double-Basin System
262(1)
9.9.10 Cost to Recover Initial Investment
262(1)
References
262(3)
10 Wave Energy 265(32)
10.1 Introduction
265(1)
10.2 Power from Wave
266(2)
10.3 World's Wave Power Resource
268(1)
10.4 Various Generic Wave Energy Converter Concepts
269(10)
10.4.1 Point Absorber Buoy
269(5)
10.4.2 Surface Attenuator
274(2)
10.4.2.1 Wave Contouring Rafts (Cockerell Rafts)
276(1)
10.4.3 Oscillating Wave Surge Converter
276(1)
10.4.4 Oscillating Water Column
276(1)
10.4.5 Overtopping Device
277(1)
10.4.6 Submerged Pressure Differential
278(1)
10.5 Other Common Types of Currently Deployed Wave Energy Converters
279(2)
10.5.1 Hose Pump
279(1)
10.5.2 Salter's Duck
280(1)
10.5.3 Masuda Buoy
281(1)
10.6 Typical Hydraulic Circuit for Wave Generators
281(3)
10.7 Approximating Wave Height Using Significant Wave Height, H5
284(2)
10.8 Beneficial and Non-Beneficial Environmental Impacts of Wave Power
286(1)
10.8.1 Advantages
286(1)
10.8.2 Disadvantages
286(1)
10.9 Year-Round Distribution of Wave Energy
286(1)
10.10 Economic Aspects and Potential Locations
287(1)
10.11 Countries with Wave Energy Studies (IRENA, 2014)
288(3)
10.11.1 United Kingdom
289(1)
10.11.2 Australia
289(1)
10.11.3 Denmark
289(1)
10.11.4 United States
290(1)
10.11.5 Belgium
290(1)
10.11.6 Sweden
290(1)
10.11.7 Ireland
290(1)
10.11.8 Israel
291(1)
10.12 Conclusion
291(1)
10.13 Problems
292(2)
10.13.1 Determine the Constant for Wave Power Equation
292(1)
10.13.2 Basic Power from Wave
292(1)
10.13.3 Wave Power in Storms
292(1)
10.13.4 Total Power from Wave
292(1)
10.13.5 Hydraulic Power Developed from Buoys
292(1)
10.13.6 Hydraulic Power
293(1)
10.13.7 Hydraulic Jack Power (Metric)
293(1)
10.13.8 Hydraulic Jack Power (English System)
293(1)
10.13.9 Piston Power for Surface Attenuator
293(1)
10.13.10 Significant Wave Height (Hs)
294(1)
10.13.11 Capital Cost of Wave Converters
294(1)
References
294(3)
11 Ocean Thermal Energy Conversion (OTEC) Systems 297(30)
11.1 Introduction
297(2)
11.2 The Basic OTEC System
299(1)
11.3 OTEC Components and Temperature Profiles
299(3)
11.4 Other Applications of OTEC
302(3)
11.5 Uses of OTEC Systems
305(1)
11.6 Basic Thermodynamic Cycle: Rankine Cycle
306(3)
11.7 OTEC Power Generation Systems
309(8)
11.7.1 Closed Cycle
309(6)
11.7.1.1 Efficiency Calculations
312(3)
11.7.2 Open Cycle
315(1)
11.7.3 Hybrid Systems
316(1)
11.8 Projects Under Way for OTEC Systems (IRENA, 2014)
317(2)
11.8.1 Natural Energy Laboratory of Hawaii Authority (NELHA)
317(1)
11.8.2 OTEC Projects in Japan
318(1)
11.8.3 OTEC Facility in India
318(1)
11.8.4 Other OTEC Projects Around the World
318(1)
11.9 Technical Limitations and Cost (IRENA, 2014)
319(2)
11.10 Conclusion
321(1)
11.11 Problems
322(2)
11.11.1 Heat Capacity of the Ocean
322(1)
11.11.2 Ideal Carnot Cycle Efficiency
322(1)
11.11.3 Volume of Water Needed for a 100 kW of Power
322(1)
11.11.4 Calculating Water Pumping Power
322(1)
11.11.5 Base Load Power Calculations
322(1)
11.11.6 OTEC Closed Cycle Calculations
323(1)
11.11.7 Actual OTEC Cycle Examples
323(1)
11.11.8 Heat of Evaporation Calculations
323(1)
11.11.9 Estimating the Number of Households Served by OTEC
324(1)
11.11.10 Estimating the Initial Capital Cost of OTEC
324(1)
References
324(3)
12 Human and Animal Power, and Piezoelectrics 327(22)
12.1 Introduction
327(3)
12.2 Animal Power
330(4)
12.2.1 Draft Animal Performance Compared with Mechanical Tractors
331(1)
12.2.2 Draft Horsepower Capability of Various Animals
331(2)
12.2.3 Unique Perspectives of Animal Power
333(1)
12.3 Human Power
334(4)
12.3.1 Advantages of Humans for Energy Use
335(1)
12.3.2 Disadvantages of Humans for Energy Use
336(1)
12.3.3 Human Factors in Energy and Power: The Ergonomic Factors
336(2)
12.4 Piezoelectrics
338(7)
12.4.1 Applications of Piezoelectricity
340(1)
12.4.2 High-Voltage Power Sources
340(3)
12.4.3 Use of Piezoelectric Devices as Sensors
343(1)
12.4.4 Piezoelectric Devices as Tiny Actuators
343(1)
12.4.5 Piezoelectric Motors
344(1)
12.4.6 Potential Future Applications of Piezoelectricity
344(1)
12.5 Conclusions
345(1)
12.6 Problems
345(2)
12.6.1 Power from Animals
345(1)
12.6.2 Power from Humans
345(1)
12.6.3 Various Units of Power
346(1)
12.6.4 Power from Groups of Animals
346(1)
12.6.5 Energy Output of a Cow in the Form of Milk
346(1)
12.6.6 Power of Humans over Longer Periods of Time
346(1)
12.6.7 Power from Arms and Legs of Humans
346(1)
12.6.8 Basic Piezoelectric Power from Numerous Repeated Cycles
346(1)
12.6.9 Piezoelectric Power from Single Tap
346(1)
12.6.10 Charging a Cell Phone with Piezoelectric Power
347(1)
References
347(2)
13 Cold Fusion and Gravitational Energy 349(28)
13.1 Introduction
349(1)
13.2 The Cold Fusion Theory
350(3)
13.3 Calorimetry
353(2)
13.4 Cold Fusion by Other Names
355(1)
13.5 Key Figures in Fusion Energy Research
356(3)
13.5.1 Randell L. Mills, Brilliant Light Power, New Jersey
356(1)
13.5.2 Michael McKubre, Energy Research Center, SRI International
357(1)
13.5.3 David J. Nagel, George Washington University
357(1)
13.5.4 Rossi's E-Cat
357(1)
13.5.5 International Thermonuclear Experimental Reactor
358(1)
13.6 The Gravitational Power Potential
359(2)
13.7 Tachyon Field Energy
361(2)
13.8 Len's Law and Faraday's Law
363(1)
13.9 Other Scientists Investigating Gravitational Field Energy and Other Renewables
364(7)
13.9.1 Dr. T. Henry Moray, American Physicist
365(1)
13.9.2 Professor Shinichi Seike, Director, Gravity Research Laboratory, Japan
365(1)
13.9.3 Bruce De Palma's N-Machine
366(1)
13.9.4 Paramahamsa Tewari of India and His Space Power Generator
367(4)
13.10 Non-Energy-Related Applications of Gravitational Field Energy
371(1)
13.11 Conclusions
371(1)
13.12 Problems
372(2)
13.12.1 Energy Balance in Electrolysis Setup
372(1)
13.12.2 Heat Capacity of Calorimeters
372(1)
13.12.3 Heat Released from Combustion of Chemicals
373(1)
13.12.4 Energy Balance in N-Machine or N-Generator
373(1)
13.12.5 Determining Magnetic Fluxes, Voltages, and Current in Conducting Coils
373(1)
13.12.6 Estimating Gravitational Forces at Various Elevations
373(1)
13.12.7 Calculating Acceleration due to Gravity at Various Elevations
374(1)
13.12.8 Calculating Voltages, Current, and Magnetic Fluxes in Coils
374(1)
13.12.9 Calculating Input and Output Power in an Electric Motor
374(1)
13.12.10 Improving the PF of Resistive Motors
374(1)
References
374(3)
14 Environmental and Social Cost of Renewables 377(28)
14.1 Introduction
377(1)
14.2 Technical Advancement of Renewable Energy Technologies
378(4)
14.3 Balance of Systems
382(2)
14.4 Overall Economics and Levelized Cost of Renewable Energy
384(3)
14.5 Life Cycle Analyses of Renewables
387(3)
14.6 Pollutant Emissions of Some Renewable Energy Technologies
390(4)
14.7 Sustainability Issues of Renewables
394(2)
14.8 The Social Costs of Renewables
396(2)
14.9 Conclusion
398(1)
14.10 Problems
399(2)
14.10.1 Area Required for Solar PV Systems
399(1)
14.10.2 Algal Oil Production and Yield Calculations
399(1)
14.10.3 Size and Cost of PV Systems for Large Commercial Applications
399(1)
14.10.4 Balance of System Cost as Percentage of PV Cost
399(1)
14.10.5 SO2 Daily Emissions Rate for Coal Power Plants
399(1)
14.10.6 SO2 Daily Emissions Rate for Biomass Power Plants
399(1)
14.10.7 Ozone and SO2 Concentration Units from NAAQS Standards
400(1)
14.10.8 Net Energy Ratio (NER) for Biofuels
400(1)
14.10.9 Net Energy Balance (NEB) for Biofuels
400(1)
14.10.10 Return on Investment for the Production Cost of Solar PV Systems
400(1)
References
401(4)
Appendix A: Table of Conversion Units 405(2)
Index 407
Sergio C. Capareda is a Professor and Faculty Fellow at Texas A&M University. He holds a Bachelor of Science degree in agricultural engineering from the University of the Philippines at Los Baños (UPLB), a Master of Engineering degree in energy technology from the Asian Institute of Technology (AIT), Thailand and a PhD in agricultural engineering from Texas A & M University (TAMU), USA.

Capareda began his academic career in the field of renewable energy at the University of the Philippines at Los Baños. He developed the UPLB Biomass Energy Laboratory with funding from the Philippine Department of Energy (PDOE) and was Program Director for two World Bank Funded projects implemented by the PDOE on rural electrification and market assessment of renewable energy in the Philippines. He also developed the Biomass Energy Resource Atlas for the Philippines with funding from the US Department of Energy and the United States Agency for International Development (USAID).

Upon joining the faculty at the TAMU Department of Biological and Agricultural Engineering in 2005, Capareda was tasked to redevelop the alternative energy program of the department. He developed and established the BioEnergy Testing and Analysis (BETA) Laboratory (http://betalab.tamu.edu) that year. The BETA Lab is currently being expanded to cover research and development for other major renewable energy technologies such as solar, wind and biomass power.

Dr. Capareda has authored or co-authored more than 90 refereed journal publications since 2003, two book chapters in the field of renewable energy and air quality and a textbook entitled "Introduction to Biomass Energy Conversions." He holds a patent on Integrated Biofuel Production System and a patent for a Pyrolysis and Gasification System for Biomass Feedstock, which has now been licensed to private companies with various heat and power generation projects from various biomass resources such as wood chips, poultry litter, municipal sludge and municipal solid wastes (MSW).

A three-time recipient of the Returning Scientist Awardee from the government of the Philippines and a two-time recipient of the USAID-Stride Visiting Professorship Award, Dr. Capareda has been providing continuous support to various universities in the Philippines as a key consultant on their renewable and air quality teaching, research and development initiatives.

Capareda is a licensed Professional Engineer in Texas and an active member of the American Society of Agricultural and Biological Engineers (ASABE).