Muutke küpsiste eelistusi

E-raamat: Introduction to Robust Combinatorial Optimization: Concepts, Models and Algorithms for Decision Making under Uncertainty

  • Formaat - EPUB+DRM
  • Hind: 135,84 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book offers a self-contained introduction to the world of robust combinatorial optimization. It explores decision-making using the min-max and min-max regret criteria, while also delving into the two-stage and recoverable robust optimization paradigms. It begins by introducing readers to general results for interval, discrete, and budgeted uncertainty sets, and subsequently provides a comprehensive examination of specific combinatorial problems, including the selection, shortest path, spanning tree, assignment, knapsack, and traveling salesperson problems.





The book equips both students and newcomers to the field with a grasp of the fundamental questions and ongoing advancements in robust optimization. Based on the authors years of teaching and refining numerous courses, it not only offers essential tools but also highlights the open questions that define this subject area.
1. Introduction.-
2. Basic Concepts.-
3. Robust Problems.-
4. General
Reformulation Results.-
5. General Solution Methods.-
6. Robust  election
Problems.-
7. Robust Shortest Path Problems.-
8. Robust Spanning Tree
Problems.-
9. Other Combinatorial Problems.-
10. Other Models for Robust
Optimization.-
11. Open Problems.
Marc Goerigk is a Professor and Chair of Business Decisions and Data Science at the University of Passau, Germany. He has previously held positions at the Universities of Siegen, Lancaster (UK), Kaiserslautern, and Göttingen, where he pursued his studies in mathematics. Marc has a keen interest in optimization under uncertainty.





Michael Hartisch currently serves as a temporary professor of Analytics & Mixed-Integer Optimization at Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany. Prior to this role, he was acting chair of Network and Data Science Management at the University of Siegen, Germany. His academic journey began with studies in mathematics at Friedrich Schiller University Jena, Germany. Michaels primary focus is on optimization under uncertainty.