Preface |
|
xxi | |
|
|
1 | (24) |
|
1.1 Problems with Assuming Normality |
|
|
2 | (4) |
|
|
6 | (1) |
|
|
7 | (1) |
|
1.4 The Central Limit Theorem |
|
|
8 | (1) |
|
1.5 Is the ANOVA F Robust? |
|
|
9 | (2) |
|
|
11 | (1) |
|
|
11 | (1) |
|
|
12 | (3) |
|
1.9 Some Data Management Issues |
|
|
15 | (8) |
|
1.9.1 Eliminating Missing Values |
|
|
23 | (1) |
|
|
23 | (2) |
|
Chapter 2 A Foundation for Robust Methods |
|
|
25 | (20) |
|
2.1 Basic Tools for Judging Robustness |
|
|
25 | (6) |
|
2.1.1 Qualitative Robustness |
|
|
26 | (3) |
|
2.1.2 Infinitesimal Robustness |
|
|
29 | (1) |
|
2.1.3 Quantitative Robustness |
|
|
30 | (1) |
|
2.2 Some Measures of Location and Their Influence Function |
|
|
31 | (7) |
|
|
31 | (1) |
|
2.2.2 The Winsorized Mean |
|
|
32 | (2) |
|
|
34 | (1) |
|
2.2.4 M-Measures of Location |
|
|
34 | (3) |
|
2.2.5 R-Measures of Location |
|
|
37 | (1) |
|
|
38 | (2) |
|
2.4 Scale Equivariant M-Measures of Location |
|
|
40 | (1) |
|
2.5 Winsorized Expected Values |
|
|
41 | (4) |
|
Chapter 3 Estimating Measures of Location and Scale |
|
|
45 | (62) |
|
3.1 A Bootstrap Estimate of a Standard Error |
|
|
45 | (3) |
|
|
47 | (1) |
|
|
48 | (9) |
|
3.2.1 Silverman's Rule of Thumb |
|
|
49 | (1) |
|
3.2.2 Rosenblatt's Shifted Histogram |
|
|
49 | (1) |
|
3.2.3 The Expected Frequency Curve |
|
|
50 | (1) |
|
3.2.4 An Adaptive Kernel Estimator |
|
|
51 | (1) |
|
3.2.5 R Functions skerd, kerSORT, kerden, kdplot, rdplot, akerd and splot |
|
|
52 | (5) |
|
3.3 The Sample Trimmed Mean |
|
|
57 | (9) |
|
3.3.1 R Functions mean, tmean and Hoc |
|
|
59 | (1) |
|
3.3.2 Estimating the Standard Error of the Trimmed Mean |
|
|
60 | (4) |
|
3.3.3 Estimating the Standard Error of the Sample Winsorized Mean |
|
|
64 | (1) |
|
3.3.4 R Functions winmean, winvar, trimse and winse |
|
|
65 | (1) |
|
3.3.5 Estimating the Standard Error of the Sample Median |
|
|
65 | (1) |
|
|
66 | (1) |
|
3.4 The Finite Sample Breakdown Point |
|
|
66 | (1) |
|
|
67 | (6) |
|
3.5.1 Estimating the Standard Error of the Sample Quantile |
|
|
68 | (1) |
|
|
69 | (1) |
|
3.5.3 The Maritz--Jarrett Estimate of the Standard Error of xq |
|
|
70 | (1) |
|
|
71 | (1) |
|
3.5.5 The Harrell--Davis Estimator |
|
|
71 | (1) |
|
3.5.6 R Functions qest and hd |
|
|
72 | (1) |
|
3.5.7 A Bootstrap Estimate of the Standard Error of θq |
|
|
73 | (1) |
|
|
73 | (1) |
|
3.6 An M-Estimator of Location |
|
|
73 | (12) |
|
|
78 | (1) |
|
3.6.2 Computing an M-Estimator of Location |
|
|
79 | (1) |
|
|
80 | (1) |
|
3.6.4 Estimating the Standard Error of the M-Estimator |
|
|
81 | (2) |
|
|
83 | (1) |
|
3.6.6 A Bootstrap Estimate of the Standard Error of μm |
|
|
84 | (1) |
|
|
84 | (1) |
|
|
85 | (1) |
|
|
86 | (1) |
|
|
86 | (3) |
|
3.8.1 Tau Measure of Location |
|
|
87 | (1) |
|
|
88 | (1) |
|
3.8.3 Zuo's Weighted Estimator |
|
|
88 | (1) |
|
3.9 The Hodges--Lehmann Estimator |
|
|
89 | (1) |
|
|
89 | (1) |
|
3.10.1 R Functions mom and bmean |
|
|
90 | (1) |
|
3.11 Some Comparisons of the Location Estimators |
|
|
90 | (3) |
|
3.12 More Measures of Scale |
|
|
93 | (7) |
|
3.12.1 The Biweight Midvariance |
|
|
94 | (2) |
|
|
96 | (1) |
|
3.12.3 The Percentage Bend Midvariance and Tau Measure of Variation |
|
|
96 | (2) |
|
3.12.4 R Functions pbvar, tauvar |
|
|
98 | (1) |
|
3.12.5 The Interquartile Range |
|
|
99 | (1) |
|
3.12.6 R Functions idealf and idrange |
|
|
99 | (1) |
|
3.13 Some Outlier Detection Methods |
|
|
100 | (5) |
|
3.13.1 Rules Based on Means and Variances |
|
|
100 | (1) |
|
3.13.2 A Method Based on the Interquartile Range |
|
|
101 | (1) |
|
3.13.3 Carling's Modification |
|
|
101 | (1) |
|
|
101 | (1) |
|
3.13.5 R Functions outbox, out and boxplot |
|
|
102 | (2) |
|
3.13.6 R Functions adjboxout and adjbox |
|
|
104 | (1) |
|
|
105 | (2) |
|
Chapter 4 Confidence Intervals in the One-Sample Case |
|
|
107 | (38) |
|
4.1 Problems when Working with Means |
|
|
107 | (4) |
|
4.2 The g-and-h Distribution |
|
|
111 | (4) |
|
4.2.1 R Functions ghdist, rmul, rngh and ghtrim |
|
|
114 | (1) |
|
4.3 Inferences About the Trimmed and Winsorized Means |
|
|
115 | (5) |
|
4.3.1 R Functions trimci, winci and D.akp.effect |
|
|
120 | (1) |
|
4.4 Basic Bootstrap Methods |
|
|
120 | (10) |
|
4.4.1 The Percentile Bootstrap Method |
|
|
121 | (1) |
|
4.4.2 R Functions onesampb and hdpb |
|
|
122 | (1) |
|
|
123 | (2) |
|
4.4.4 Bootstrap Methods when Using a Trimmed Mean |
|
|
125 | (4) |
|
4.4.5 Singh's Modification |
|
|
129 | (1) |
|
4.4.6 R Functions trimpb and trimcibt |
|
|
130 | (1) |
|
4.5 Inferences About M-Estimators |
|
|
130 | (3) |
|
4.5.1 R Functions mestci and momci |
|
|
132 | (1) |
|
4.6 Confidence Intervals for Quantiles |
|
|
133 | (7) |
|
4.6.1 Beware of Tied Values when Making Inferences About Quantiles |
|
|
136 | (1) |
|
4.6.2 A Modification of the Distribution-Free Method for the Median |
|
|
137 | (1) |
|
4.6.3 R Functions qmjci, hdci, sint, sintv2, qci, qcipb and qint |
|
|
138 | (2) |
|
|
140 | (2) |
|
4.7.1 Bartlett Corrected Empirical Likelihood |
|
|
140 | (2) |
|
|
142 | (1) |
|
|
143 | (2) |
|
Chapter 5 Comparing Two Croups |
|
|
145 | (90) |
|
|
146 | (16) |
|
5.1.1 The Kolmogorov-Smirnov Test |
|
|
149 | (3) |
|
5.1.2 R Functions ks, kssig, kswsig, and kstiesig |
|
|
152 | (1) |
|
5.1.3 The B and W Band for the Shift Function |
|
|
153 | (2) |
|
5.1.4 R Functions sband and wband |
|
|
155 | (3) |
|
5.1.5 Confidence Band for Specified Quantiles |
|
|
158 | (2) |
|
5.1.6 R Functions shifthd, qcomhd, qcomhdMC and q2gci |
|
|
160 | (1) |
|
5.1.7 R Functions g2plot and g5plot |
|
|
161 | (1) |
|
|
162 | (4) |
|
5.3 Comparing Medians and Other Trimmed Means |
|
|
166 | (16) |
|
5.3.1 R Functions yuen and msmed |
|
|
169 | (1) |
|
5.3.2 A Bootstrap-t Method for Comparing Trimmed Means |
|
|
170 | (3) |
|
5.3.3 R Functions yuenbt and yhbt |
|
|
173 | (3) |
|
5.3.4 Measuring Effect Size |
|
|
176 | (4) |
|
5.3.5 R Functions akp.effect, yuenv2, ees.ci, med.effect and qhat |
|
|
180 | (2) |
|
5.4 Inferences Based on a Percentile Bootstrap Method |
|
|
182 | (5) |
|
5.4.1 Comparing M-Estimators |
|
|
183 | (1) |
|
5.4.2 Comparing Trimmed Means and Medians |
|
|
184 | (1) |
|
5.4.3 R Functions trimpb2, pb2gen, m2ci, medpb2 and M2gbt |
|
|
185 | (2) |
|
5.5 Comparing Measures of Scale |
|
|
187 | (2) |
|
5.5.1 Comparing Variances |
|
|
187 | (1) |
|
|
188 | (1) |
|
5.5.3 Comparing Biweight Midvariances |
|
|
188 | (1) |
|
|
189 | (1) |
|
|
189 | (1) |
|
|
190 | (1) |
|
5.7 Rank-Based Methods and a Probabilistic Measure of Effect Size |
|
|
190 | (8) |
|
5.7.1 The Cliff and Brunner-Munzel Methods |
|
|
192 | (3) |
|
5.7.2 R Functions cid, cidv2, bmp, wmwloc, wmwpb and loc2plot |
|
|
195 | (3) |
|
5.8 Comparing Two Independent Binomial and Multinomial Distributions |
|
|
198 | (7) |
|
|
200 | (1) |
|
|
200 | (1) |
|
|
201 | (1) |
|
5.8.4 R Functions twobinom, twobici, bi2KMS, bi2KMSv2 and bi2CR |
|
|
201 | (1) |
|
5.8.5 Comparing Discrete (Multinomial) Distributions |
|
|
202 | (1) |
|
5.8.6 R Functions binband, splotg2, cumrelf |
|
|
203 | (2) |
|
5.9 Comparing Dependent Groups |
|
|
205 | (27) |
|
5.9.1 A Shift Function for Dependent Groups |
|
|
206 | (1) |
|
|
207 | (1) |
|
5.9.3 Comparing Specified Quantiles |
|
|
207 | (3) |
|
5.9.4 R Functions shiftdhd, Dqcomhd, qdec2, Dqdif and difQpci |
|
|
210 | (2) |
|
5.9.5 Comparing Trimmed Means |
|
|
212 | (3) |
|
5.9.6 R Functions yuend, yuendv2 and D.akp.effect |
|
|
215 | (2) |
|
5.9.7 A Bootstrap-t Method for Marginal Trimmed Means |
|
|
217 | (1) |
|
|
217 | (1) |
|
5.9.9 Inferences About the Distribution of Difference Scores |
|
|
217 | (2) |
|
5.9.10 R Functions loc2dif and 12drmci |
|
|
219 | (1) |
|
5.9.11 Percentile Bootstrap: Comparing Medians, M-Estimators and Other Measures of Location and Scale |
|
|
220 | (1) |
|
5.9.12 R Function bootdpci |
|
|
221 | (1) |
|
5.9.13 Handling Missing Values |
|
|
222 | (4) |
|
5.9.14 R Functions rm2miss and rmmismcp |
|
|
226 | (1) |
|
5.9.15 Comparing Variances |
|
|
227 | (1) |
|
5.9.16 R Function comdvar |
|
|
228 | (1) |
|
5.9.17 The Sign Test and Inferences About the Binomial Distribution |
|
|
228 | (3) |
|
5.9.18 R Functions binomci, acbinomci and binomLCO |
|
|
231 | (1) |
|
|
232 | (3) |
|
Chapter 6 Some Multivariate Methods |
|
|
235 | (144) |
|
|
235 | (1) |
|
|
236 | (9) |
|
|
236 | (1) |
|
|
236 | (3) |
|
6.2.3 Computing Halfspace Depth |
|
|
239 | (2) |
|
6.2.4 R Functions depth2, depth, fdepth, fdepthv2, unidepth |
|
|
241 | (1) |
|
|
242 | (1) |
|
6.2.6 R Functions pdis, pdisMC, and pdepth |
|
|
243 | (1) |
|
6.2.7 Other Measures of Depth |
|
|
244 | (1) |
|
6.2.8 R Functions zdist, zoudepth and prodepth |
|
|
245 | (1) |
|
6.3 Some Affine Equivariant Estimators |
|
|
245 | (12) |
|
6.3.1 Minimum Volume Ellipsoid Estimator |
|
|
247 | (1) |
|
6.3.2 The Minimum Covariance Determinant Estimator |
|
|
247 | (1) |
|
6.3.3 S-Estimators and Constrained M-Estimators |
|
|
248 | (1) |
|
|
249 | (1) |
|
6.3.5 Donoho--Gasko Generalization of a Trimmed Mean |
|
|
249 | (1) |
|
6.3.6 R Functions dmean and dcov |
|
|
250 | (2) |
|
6.3.7 The Stahel--Donoho W-Estimator |
|
|
252 | (1) |
|
|
253 | (1) |
|
6.3.9 Median Ball Algorithm |
|
|
253 | (1) |
|
|
253 | (1) |
|
|
254 | (1) |
|
|
255 | (1) |
|
|
255 | (1) |
|
6.3.14 R Functions MARest and dmedian |
|
|
256 | (1) |
|
6.4 Multivariate Outlier Detection Methods |
|
|
257 | (20) |
|
|
258 | (2) |
|
|
260 | (1) |
|
|
260 | (1) |
|
|
261 | (1) |
|
6.4.5 R Functions covmve and covmcd |
|
|
261 | (1) |
|
|
262 | (1) |
|
|
263 | (2) |
|
|
265 | (1) |
|
6.4.9 A Projection Method |
|
|
266 | (2) |
|
6.4.10 R Functions outpro and out3d |
|
|
268 | (1) |
|
6.4.11 Outlier Identification in High Dimensions |
|
|
269 | (1) |
|
6.4.12 R Functions outproad and outmgvad |
|
|
270 | (1) |
|
6.4.13 Methods Designed for Functional Data |
|
|
270 | (2) |
|
6.4.14 R Functions FBplot, Flplot, medcurve, func.out, spag.plot, funloc and funlocpb |
|
|
272 | (3) |
|
6.4.15 Comments on Choosing a Method |
|
|
275 | (2) |
|
6.5 A Skipped Estimator of Location and Scatter |
|
|
277 | (3) |
|
6.5.1 R Functions smean, wmcd, wmve, mgvmean, L1 medcen, spat, mgvcov, skip, skipcov |
|
|
278 | (2) |
|
6.6 Robust Generalized Variance |
|
|
280 | (1) |
|
|
280 | (1) |
|
6.7 Multivariate Location: Inference in the One-Sample Case |
|
|
281 | (4) |
|
6.7.1 Inferences Based on the OP Measure of Location |
|
|
281 | (1) |
|
6.7.2 Extension of Hotelling's T2 to Trimmed Means |
|
|
282 | (1) |
|
6.7.3 R Functions smeancrv2 and hotell.tr |
|
|
283 | (1) |
|
6.7.4 Inferences Based on the MGV Estimator |
|
|
284 | (1) |
|
|
285 | (1) |
|
6.8 Comparing OP Measures of Location |
|
|
285 | (3) |
|
6.8.1 R Functions smean2, matsplit and mat2grp |
|
|
286 | (1) |
|
6.8.2 Comparing Robust Generalized Variances |
|
|
287 | (1) |
|
|
287 | (1) |
|
6.9 Multivariate Density Estimators |
|
|
288 | (1) |
|
6.10 A Two-Sample, Projection-Type Extension of the Wilcoxon--Mann--Whitney Test |
|
|
289 | (3) |
|
6.10.1 R Functions mulwmw and mulwmwv2 |
|
|
291 | (1) |
|
6.11 A Relative Depth Analog of the Wilcoxon--Mann--Whitney Test |
|
|
292 | (4) |
|
|
294 | (2) |
|
6.12 Comparisons Based on Depth |
|
|
296 | (4) |
|
6.12.1 R Functions lsqs3 and depthg2 |
|
|
298 | (2) |
|
6.13 Comparing Dependent Groups Based on All Pairwise Differences |
|
|
300 | (2) |
|
|
302 | (1) |
|
6.14 Robust Principal Components Analysis |
|
|
302 | (11) |
|
6.14.1 R Functions prcomp and regpca |
|
|
304 | (1) |
|
|
305 | (1) |
|
|
305 | (1) |
|
|
306 | (1) |
|
|
306 | (1) |
|
|
307 | (1) |
|
6.14.7 R Functions outpca, robpca, robpcas, SPCA, Ppca, Ppca, Summary |
|
|
308 | (1) |
|
6.14.8 Comments on Choosing the Number of Components |
|
|
309 | (4) |
|
|
313 | (2) |
|
6.15.1 R Functions Kmeans, kmeans.grp, TKmeans, TKmeans.grp |
|
|
314 | (1) |
|
6.16 Multivariate Discriminate Analysis |
|
|
315 | (2) |
|
6.16.1 R Function KNNdist |
|
|
316 | (1) |
|
|
317 | (62) |
|
Chapter 7 One-Way and Higher Designs for Independent Groups |
|
|
379 | (98) |
|
7.1 Trimmed Means and a One-Way Design |
|
|
320 | (13) |
|
7.1.1 A Welch-Type Procedure and a Robust Measure of Effect Size |
|
|
321 | (2) |
|
7.1.2 R Functions t1way, t1wayv2, esmcp, fac2list, t1wayF |
|
|
323 | (4) |
|
7.1.3 A Generalization of Box's Method |
|
|
327 | (1) |
|
7.1.4 R Function box 1 way |
|
|
328 | (1) |
|
7.1.5 Comparing Medians and Other Quantiles |
|
|
328 | (2) |
|
7.1.6 R Functions med 1 way and Qanova |
|
|
330 | (1) |
|
7.1.7 A Bootstrap-t Method |
|
|
330 | (1) |
|
7.1.8 R Functions t1waybt and btrim |
|
|
331 | (2) |
|
7.2 Two-Way Designs and Trimmed Means |
|
|
333 | (8) |
|
|
337 | (2) |
|
|
339 | (2) |
|
7.2.3 R Functions med2way and Q2anova |
|
|
341 | (1) |
|
7.3 Three-Way Designs and Trimmed Means Including Medians |
|
|
341 | (5) |
|
7.3.1 R Functions t3way, fac2list and Q3anova |
|
|
343 | (3) |
|
7.4 Multiple Comparisons Based on Medians and Other Trimmed Means |
|
|
346 | (26) |
|
7.4.1 Basic Methods Based on Trimmed Means |
|
|
347 | (2) |
|
7.4.2 R Functions lincon, conCON and stepmcp |
|
|
349 | (5) |
|
7.4.3 Multiple Comparisons for Two-Way and Three-Way Designs |
|
|
354 | (1) |
|
7.4.4 R Functions bbmcp, mcp2med, bbbmcp, mcp3med, con2way and con3way |
|
|
355 | (2) |
|
7.4.5 A Bootstrap-t Procedure |
|
|
357 | (2) |
|
7.4.6 R Functions linconb, bbtrim and bbbtrim |
|
|
359 | (2) |
|
7.4.7 Controlling the Familywise Error Rate: Improvements on the Bonferroni Method |
|
|
361 | (3) |
|
7.4.8 R Functions p.adjust and mcpKadjp |
|
|
364 | (1) |
|
7.4.9 Percentile Bootstrap Methods for Comparing Medians, Other Trimmed Means and Quantiles |
|
|
365 | (1) |
|
7.4.10 R Functions linconpb, bbmcppb, bbbmcppb, medpb, Qmcp, med2mcp, med3mcp and q2by2 |
|
|
365 | (3) |
|
7.4.11 Judging Sample Sizes |
|
|
368 | (1) |
|
7.4.12 R Function hochberg |
|
|
369 | (1) |
|
7.4.13 Explanatory Measure of Effect Size |
|
|
370 | (1) |
|
7.4.14 R Functions ESmainMCP and esImcp |
|
|
370 | (1) |
|
7.4.15 Comparing Curves (Functional Data) |
|
|
371 | (1) |
|
7.4.16 R Functions funyuenpb and Flplot2g |
|
|
372 | (1) |
|
7.5 A Random Effects Model for Trimmed Means |
|
|
372 | (4) |
|
7.5.1 A Winsorized Intraclass Correlation |
|
|
373 | (3) |
|
7.5.2 R Function rananova |
|
|
376 | (1) |
|
7.6 Global Tests Based on M-Measures of Location |
|
|
376 | (9) |
|
7.6.1 R Functions b1 way and pbadepth |
|
|
380 | (1) |
|
7.6.2 M-Estimators and Multiple Comparisons |
|
|
381 | (3) |
|
7.6.3 R Functions linconm and pbmcp |
|
|
384 | (1) |
|
7.6.4 M-Estimators and the Random Effects Model |
|
|
385 | (1) |
|
7.6.5 Other Methods for One-Way Designs |
|
|
385 | (1) |
|
7.7 M-Measures of Location and a Two-Way Design |
|
|
385 | (4) |
|
7.7.1 R Functions pbad2way and mcp2a |
|
|
388 | (1) |
|
7.8 Ranked-Based Methods for a One-Way Design |
|
|
389 | (7) |
|
7.8.1 The Rust--Fligner Method |
|
|
389 | (2) |
|
|
391 | (1) |
|
7.8.3 A Heteroscedastic Rank-Based Method That Allows Tied Values |
|
|
391 | (1) |
|
|
391 | (2) |
|
7.8.5 Inferences About a Probabilistic Measure of Effect Size |
|
|
393 | (2) |
|
7.8.6 R Functions cidmulv2, wmwaov and cidM |
|
|
395 | (1) |
|
7.9 A Rank-Based Method for a Two-Way Design |
|
|
396 | (4) |
|
|
397 | (1) |
|
7.9.2 The Patel--Hoel Approach to Interactions |
|
|
398 | (2) |
|
|
400 | (1) |
|
7.10 MANOVA Based on Trimmed Means |
|
|
400 | (9) |
|
7.10.1 R Functions MULtr.anova, MULAOVp, bw2list and YYmanova |
|
|
403 | (2) |
|
|
405 | (2) |
|
7.10.3 R Functions linconMpb, linconSpb, YYmcp, fac2Mlist and fac2BBMlist |
|
|
407 | (2) |
|
|
409 | (4) |
|
7.11.1 R Functions anova.nestA, mcp.nestA and anova.nestAP |
|
|
412 | (1) |
|
|
413 | (64) |
|
Chapter 8 Comparing Multiple Dependent Croups |
|
|
477 | (8) |
|
8.1 Comparing Trimmed Means |
|
|
417 | (9) |
|
8.1.1 Omnibus Test Based on the Trimmed Means of the Marginal Distributions |
|
|
418 | (1) |
|
|
418 | (2) |
|
8.1.3 Pairwise Comparisons and Linear Contrasts Based on Trimmed Means |
|
|
420 | (3) |
|
8.1.4 Linear Contrasts Based on the Marginal Random Variables |
|
|
423 | (1) |
|
8.1.5 R Functions rmmcp, rmmismcp and trimcimul |
|
|
424 | (1) |
|
8.1.6 Judging the Sample Size |
|
|
424 | (2) |
|
8.1.7 R Functions stein1.tr and stein2.tr |
|
|
426 | (1) |
|
8.2 Bootstrap Methods Based on Marginal Distributions |
|
|
426 | (13) |
|
8.2.1 Comparing Trimmed Means |
|
|
427 | (1) |
|
8.2.2 R Function rmanovab |
|
|
427 | (1) |
|
8.2.3 Multiple Comparisons Based on Trimmed Means |
|
|
428 | (1) |
|
8.2.4 R Functions pairdepb and bptd |
|
|
429 | (2) |
|
8.2.5 Percentile Bootstrap Methods |
|
|
431 | (3) |
|
8.2.6 R Functions bd 1 way, ddep and ddepGMC_C |
|
|
434 | (2) |
|
8.2.7 Multiple Comparisons Using M-Estimators or Skipped Estimators |
|
|
436 | (1) |
|
8.2.8 R Functions lindm and mcpOV |
|
|
437 | (2) |
|
8.3 Bootstrap Methods Based on Difference Scores |
|
|
439 | (6) |
|
|
440 | (2) |
|
8.3.2 Multiple Comparisons |
|
|
442 | (1) |
|
8.3.3 R Functions rmmcppb, wmcppb, dmedpb, lindepbt and qdmcpdif |
|
|
443 | (2) |
|
8.4 Comments on Which Method to Use |
|
|
445 | (2) |
|
8.5 Some Rank-Based Methods |
|
|
447 | (2) |
|
8.5.1 R Functions apanova and bprm |
|
|
449 | (1) |
|
8.6 Between-by-Within and Within-by-Within Designs |
|
|
449 | (25) |
|
8.6.1 Analyzing a Between-by-Within Design Based on Trimmed Means |
|
|
449 | (2) |
|
8.6.2 R Functions bwtrim and tsplit |
|
|
451 | (3) |
|
8.6.3 Data Management: R Function bw2list |
|
|
454 | (1) |
|
8.6.4 Bootstrap-t Method for a Between-by-Within Design |
|
|
455 | (1) |
|
8.6.5 R Functions bwtrimbt and tsplitbt |
|
|
456 | (1) |
|
8.6.6 Percentile Bootstrap Methods for a Between-by-Within Design |
|
|
456 | (2) |
|
8.6.7 R Functions sppba, sppbb and sppbi |
|
|
458 | (1) |
|
8.6.8 Multiple Comparisons |
|
|
459 | (4) |
|
8.6.9 R Functions bwmcp, bwamcp, bwbmcp, bwimcp, bwimcpES, spmcpa, spmcpb and spmcpi |
|
|
463 | (2) |
|
8.6.10 Within-by-Within Designs |
|
|
465 | (1) |
|
8.6.11 R Functions wwtrim, wwtrimbt, wwmcp, wwmcppb and wwmcpbt |
|
|
466 | (1) |
|
8.6.12 A Rank-Based Approach |
|
|
467 | (3) |
|
|
470 | (2) |
|
8.6.14 Rank-Based Multiple Comparisons |
|
|
472 | (1) |
|
|
472 | (1) |
|
8.6.16 Multiple Comparisons when Using a Patel--Hoel Approach to Interactions |
|
|
473 | (1) |
|
8.6.17 R Function sisplit |
|
|
474 | (1) |
|
8.7 Some Rank-Based Multivariate Methods |
|
|
474 | (5) |
|
8.7.1 The Munzel--Brunner Method |
|
|
475 | (1) |
|
|
476 | (1) |
|
8.7.3 The Choi--Marden Multivariate Rank Test |
|
|
477 | (2) |
|
|
479 | (1) |
|
|
479 | (5) |
|
8.8.1 Global Tests Based on Trimmed Means |
|
|
480 | (1) |
|
8.8.2 R Functions bbwtrim, bwwtrim, wwwtrim, bbwtrimbt, bwwtrimbt and wwwtrimbt |
|
|
481 | (1) |
|
8.8.3 Data Management: R Functions bw2list and bbw2list |
|
|
481 | (1) |
|
8.8.4 Multiple Comparisons |
|
|
482 | (1) |
|
|
483 | (1) |
|
8.8.6 R Functions bbwmcp, bwwmcp, bbwmcppb, bwwmcppb and wwwmcppb |
|
|
483 | (1) |
|
|
484 | (1) |
|
Chapter 9 Correlation and Tests of Independence |
|
|
485 | (32) |
|
9.1 Problems with Pearson's Correlation |
|
|
485 | (5) |
|
9.1.1 Features of Data That Affect r and T |
|
|
488 | (1) |
|
9.1.2 Heteroscedasticity and the Classic Test that ρ = 0 |
|
|
489 | (1) |
|
9.2 Two Types of Robust Correlations |
|
|
490 | (1) |
|
9.3 Some Type M Measures of Correlation |
|
|
490 | (14) |
|
9.3.1 The Percentage Bend Correlation |
|
|
490 | (1) |
|
9.3.2 A Test of Independence Based on ρpb |
|
|
491 | (2) |
|
|
493 | (1) |
|
9.3.4 A Test of Zero Correlation Among p Random Variables |
|
|
493 | (2) |
|
|
495 | (1) |
|
9.3.6 The Winsorized Correlation |
|
|
496 | (1) |
|
9.3.7 R Functions wincor and winall |
|
|
497 | (1) |
|
9.3.8 The Biweight Midcovariance and Correlation |
|
|
498 | (1) |
|
9.3.9 R Functions bicov and bicovm |
|
|
499 | (1) |
|
|
500 | (1) |
|
|
501 | (1) |
|
9.3.12 R Functions tau, spear, cor and taureg |
|
|
502 | (1) |
|
9.3.13 Heteroscedastic Tests of Zero Correlation |
|
|
503 | (1) |
|
9.3.14 R Functions corb, pcorb and pcorhc4 |
|
|
504 | (1) |
|
9.4 Some Type O Correlations |
|
|
504 | (5) |
|
9.4.1 MVE and MCD Correlations |
|
|
505 | (1) |
|
9.4.2 Skipped Measures of Correlation |
|
|
505 | (1) |
|
|
505 | (1) |
|
9.4.4 Inferences Based on Multiple Skipped Correlations |
|
|
506 | (2) |
|
9.4.5 R Functions scor, mscor and scorci |
|
|
508 | (1) |
|
9.5 A Test of Independence Sensitive to Curvature |
|
|
509 | (4) |
|
9.5.1 R Functions indt, indtall and medind |
|
|
512 | (1) |
|
9.6 Comparing Correlations: Independent Case |
|
|
513 | (2) |
|
9.6.1 Comparing Pearson Correlations |
|
|
513 | (1) |
|
9.6.2 Comparing Robust Correlations |
|
|
514 | (1) |
|
9.6.3 R Functions twopcor, twohc4cor and twocor |
|
|
514 | (1) |
|
|
515 | (2) |
|
Chapter 10 Robust Regression |
|
|
517 | (68) |
|
10.1 Problems with Ordinary Least Squares |
|
|
518 | (12) |
|
10.1.1 Computing Confidence Intervals Under Heteroscedasticity |
|
|
521 | (5) |
|
|
526 | (1) |
|
10.1.3 R Functions lsfitci, olshc4, hc4test and hc4wtest |
|
|
527 | (2) |
|
10.1.4 Comments on Comparing Means via Dummy Coding |
|
|
529 | (1) |
|
10.1.5 Salvaging the Homoscedasticity Assumption |
|
|
529 | (1) |
|
10.2 Theil--Sen Estimator |
|
|
530 | (5) |
|
10.2.1 R Functions tsreg, tshdreg, correg, regplot and regp2plot |
|
|
533 | (2) |
|
10.3 Least Median of Squares |
|
|
535 | (1) |
|
|
535 | (1) |
|
10.4 Least Trimmed Squares Estimator |
|
|
535 | (1) |
|
10.4.1 R Functions ltsreg and ltsgreg |
|
|
536 | (1) |
|
10.5 Least Trimmed Absolute Value Estimator |
|
|
536 | (1) |
|
|
537 | (1) |
|
|
537 | (1) |
|
|
538 | (3) |
|
10.8 Generalized M-Estimators |
|
|
541 | (4) |
|
|
545 | (1) |
|
10.9 The Coakley--Hettmansperger and Yohai Estimators |
|
|
545 | (4) |
|
|
547 | (1) |
|
10.9.2 R Functions chreg and MMreg |
|
|
548 | (1) |
|
|
549 | (1) |
|
10.10.1 R Functions mgvreg and opreg |
|
|
549 | (1) |
|
10.11 Deepest Regression Line |
|
|
550 | (1) |
|
10.11.1 R Functions rdepth and mdepreg |
|
|
551 | (1) |
|
10.12 A Criticism of Methods with a High Breakdown Point |
|
|
551 | (1) |
|
10.13 Some Additional Estimators |
|
|
551 | (14) |
|
10.13.1 S-Estimators and τ-Estimators |
|
|
552 | (1) |
|
10.13.2 R Functions snmreg and stsreg |
|
|
553 | (1) |
|
10.13.3 E-Type Skipped Estimators |
|
|
553 | (2) |
|
10.13.4 R Functions mbmreg, tstsreg, tssnmreg and gyreg |
|
|
555 | (1) |
|
10.13.5 Methods Based on Robust Covariances |
|
|
556 | (2) |
|
10.13.6 R Functions bireg, winreg and COVreg |
|
|
558 | (1) |
|
|
559 | (1) |
|
10.13.8 L1 and Quantile Regression |
|
|
559 | (1) |
|
10.13.9 R Functions qreg, rqfit, qplotreg |
|
|
560 | (1) |
|
10.13.10 Methods Based on Estimates of the Optimal Weights |
|
|
561 | (1) |
|
10.13.11 Projection Estimators |
|
|
562 | (1) |
|
10.13.12 Methods Based on Ranks |
|
|
562 | (2) |
|
10.13.13 R Functions Rfit and Rfit.est |
|
|
564 | (1) |
|
10.13.14 Empirical Likelihood Type and Distance-Constrained Maximum Likelihood Estimators |
|
|
565 | (1) |
|
10.14 Comments About Various Estimators |
|
|
565 | (6) |
|
10.14.1 Contamination Bias |
|
|
567 | (4) |
|
10.15 Outlier Detection Based on a Robust Fit |
|
|
571 | (2) |
|
10.15.1 Detecting Regression Outliers |
|
|
571 | (1) |
|
10.15.2 R Functions reglev and rmblo |
|
|
571 | (2) |
|
10.16 Logistic Regression and the General Linear Model |
|
|
573 | (4) |
|
10.16.1 R Functions glm, logreg, wlogreg, logreg.plot |
|
|
575 | (1) |
|
10.16.2 The General Linear Model |
|
|
576 | (1) |
|
10.16.3 R Function glmrob |
|
|
576 | (1) |
|
10.17 Multivariate Regression |
|
|
577 | (5) |
|
10.17.1 The RADA Estimator |
|
|
578 | (1) |
|
10.17.2 The Least Distance Estimator |
|
|
579 | (1) |
|
10.17.3 R Functions MULMreg, mlrreg and Mreglde |
|
|
579 | (2) |
|
10.17.4 Multivariate Least Trimmed Squares Estimator |
|
|
581 | (1) |
|
10.17.5 R Function MULtsreg |
|
|
581 | (1) |
|
10.17.6 Other Robust Estimators |
|
|
582 | (1) |
|
|
582 | (3) |
|
Chapter 11 More Regression Methods |
|
|
585 | (108) |
|
11.1 Inferences About Robust Regression Parameters |
|
|
585 | (21) |
|
11.1.1 Omnibus Tests for Regression Parameters |
|
|
586 | (4) |
|
11.1.2 R Function regtest |
|
|
590 | (1) |
|
11.1.3 Inferences About Individual Parameters |
|
|
591 | (2) |
|
11.1.4 R Functions regci, regciMC and wlogregci |
|
|
593 | (2) |
|
11.1.5 Methods Based on the Quantile Regression Estimator |
|
|
595 | (2) |
|
11.1.6 R Functions rqtest, qregci and qrchk |
|
|
597 | (1) |
|
11.1.7 Inferences Based on the OP Estimator |
|
|
598 | (2) |
|
11.1.8 R Functions opregpb and opregpbMC |
|
|
600 | (1) |
|
11.1.9 Hypothesis Testing when Using a Multivariate Regression Estimator RADA |
|
|
600 | (1) |
|
11.1.10 R Function mlrGtest |
|
|
601 | (1) |
|
11.1.11 Robust ANOVA via Dummy Coding |
|
|
601 | (1) |
|
11.1.12 Confidence Bands for the Typical Value of y Given x |
|
|
602 | (2) |
|
11.1.13 R Functions regYhat, regYci, and regYband |
|
|
604 | (2) |
|
|
606 | (1) |
|
11.2 Comparing the Regression Parameters of J ≥ 2 Groups |
|
|
606 | (12) |
|
11.2.1 Methods for Comparing Independent Groups |
|
|
606 | (6) |
|
11.2.2 R Functions reg2ci, reg1way, reg1wayISO, ancGpar, ols1way, ols1wayISO, olsJmcp, olsJ2, reg1mcp and olsWmcp |
|
|
612 | (4) |
|
11.2.3 Methods for Comparing Two Dependent Groups |
|
|
616 | (2) |
|
11.2.4 R Functions DregG, difreg, DregGOLS |
|
|
618 | (1) |
|
11.3 Detecting Heteroscedasticity |
|
|
618 | (3) |
|
11.3.1 A Quantile Regression Approach |
|
|
619 | (1) |
|
11.3.2 Koenker--Bassett Method |
|
|
620 | (1) |
|
11.3.3 R Functions qhomt and khomreg |
|
|
620 | (1) |
|
11.4 Curvature and Half-Slope Ratios |
|
|
621 | (2) |
|
|
622 | (1) |
|
11.5 Curvature and Nonparametric Regression |
|
|
623 | (26) |
|
|
624 | (1) |
|
11.5.2 Kernel Estimators and Cleveland's LOWESS |
|
|
624 | (2) |
|
11.5.3 R Functions lplot, lplot.pred and kerreg |
|
|
626 | (2) |
|
11.5.4 The Running-Interval Smoother |
|
|
628 | (5) |
|
11.5.5 R Functions rplot and runYhat |
|
|
633 | (2) |
|
11.5.6 Smoothers for Estimating Quantiles |
|
|
635 | (1) |
|
|
636 | (1) |
|
11.5.8 Special Methods for Binary Outcomes |
|
|
637 | (1) |
|
11.5.9 R Functions logSM, logSMpred, bkreg and rplot.bin |
|
|
638 | (1) |
|
11.5.10 Smoothing with More than One Predictor |
|
|
639 | (1) |
|
11.5.11 R Functions rplot, runYhat, rplotsm and runpd |
|
|
640 | (4) |
|
|
644 | (3) |
|
|
647 | (1) |
|
11.5.14 R Functions adrun, adrunl, gamplot, gamplotINT |
|
|
648 | (1) |
|
11.6 Checking the Specification of a Regression Model |
|
|
649 | (6) |
|
11.6.1 Testing the Hypothesis of a Linear Association |
|
|
650 | (1) |
|
11.6.2 R Function lintest |
|
|
651 | (1) |
|
11.6.3 Testing the Hypothesis of a Generalized Additive Model |
|
|
652 | (1) |
|
|
653 | (1) |
|
11.6.5 Inferences About the Components of a Generalized Additive Model |
|
|
653 | (1) |
|
|
654 | (1) |
|
11.6.7 Detecting Heteroscedasticity Based on Residuals |
|
|
654 | (1) |
|
|
655 | (1) |
|
11.7 Regression Interactions and Moderator Analysis |
|
|
655 | (9) |
|
11.7.1 R Functions kercon, riplot, runsm2g, ols.plot.inter, olshc4.inter, reg.plot.inter and regci.inter |
|
|
657 | (4) |
|
11.7.2 Mediation Analysis |
|
|
661 | (2) |
|
11.7.3 R Functions ZYmediate, regmed2 and regmediate |
|
|
663 | (1) |
|
11.8 Comparing Parametric, Additive and Nonparametric Fits |
|
|
664 | (2) |
|
11.8.1 R Functions adpchk and pmodchk |
|
|
664 | (2) |
|
11.9 Measuring the Strength of an Association Given a Fit to the Data |
|
|
666 | (5) |
|
11.9.1 R Functions RobRsq, qcorp1 and qcor |
|
|
669 | (1) |
|
11.9.2 Comparing Two Independent Groups via the LOWESS Version of Explanatory Power |
|
|
670 | (1) |
|
11.9.3 R Functions smcorcom and smstrcom |
|
|
671 | (1) |
|
11.10 Comparing Predictors |
|
|
671 | (16) |
|
11.10.1 Comparing Correlations |
|
|
672 | (3) |
|
11.10.2 R Functions TWOpov, TWOpNOV, corCOMmcp, twoDcorR, and twoDNOV |
|
|
675 | (1) |
|
11.10.3 Methods Based on Prediction Error |
|
|
676 | (2) |
|
11.10.4 R Functions regpre and regpreCV |
|
|
678 | (2) |
|
|
680 | (1) |
|
11.10.6 Inferences About Which Predictors Are Best |
|
|
681 | (5) |
|
11.10.7 R Functions reglVcom, ts2str and sm2strv7 |
|
|
686 | (1) |
|
11.11 Marginal Longitudinal Data Analysis: Comments on Comparing Groups |
|
|
687 | (3) |
|
11.11.1 R Functions long2g, longreg, longreg.plot and xyplot |
|
|
689 | (1) |
|
|
690 | (3) |
|
|
693 | (48) |
|
12.1 Methods Based on Specific Design Points and a Linear Model |
|
|
695 | (7) |
|
|
696 | (1) |
|
|
696 | (2) |
|
12.1.3 Dealing with Two Covariates |
|
|
698 | (1) |
|
12.1.4 R Functions ancJN, ancJNmp, ancJNmpcp, anclin, reg2plot and reg2g.p2plot |
|
|
699 | (3) |
|
12.2 Methods when There Is Curvature and a Single Covariate |
|
|
702 | (17) |
|
|
703 | (2) |
|
12.2.2 Method BB: Bootstrap Bagging |
|
|
705 | (1) |
|
|
706 | (1) |
|
|
707 | (1) |
|
|
708 | (2) |
|
12.2.6 R Functions ancova, ancovaWMW, ancpb, rplot2g, runmean2g, lplot2g, ancdifplot, ancboot, ancbbpb, qhdsm2g, ancovaUB, ancovaUB.pv, ancdet, ancmg1 and ancGLOB |
|
|
710 | (9) |
|
12.3 Dealing with Two Covariates when There Is Curvature |
|
|
719 | (12) |
|
|
719 | (1) |
|
|
720 | (2) |
|
|
722 | (1) |
|
12.3.4 R Functions ancovamp, ancovampG, ancmppb, ancmg, ancov2COV, ancdes and ancdet2C |
|
|
723 | (8) |
|
|
731 | (4) |
|
|
731 | (3) |
|
12.4.2 R Functions ancsm and Qancsm |
|
|
734 | (1) |
|
12.5 Methods for Dependent Groups |
|
|
735 | (5) |
|
12.5.1 Methods Based on a Linear Model |
|
|
735 | (1) |
|
12.5.2 R Functions Dancts and Dancols |
|
|
736 | (1) |
|
12.5.3 Dealing with Curvature: Methods DY, DUB and DTAP |
|
|
736 | (1) |
|
12.5.4 R Functions Dancova, Dancovapb, DancovaUB and Dancdet |
|
|
737 | (3) |
|
|
740 | (1) |
References |
|
741 | (38) |
Index |
|
779 | |