Muutke küpsiste eelistusi

E-raamat: Introduction to Smooth Ergodic Theory

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 86,19 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book is the first comprehensive introduction to smooth ergodic theory. It consists of two parts: the first introduces the core of the theory and the second discusses more advanced topics. In particular, the book describes the general theory of Lyapunov exponents and its applications to the stability theory of differential equations, the concept of nonuniform hyperbolicity, stable manifold theory (with emphasis on the absolute continuity of invariant foliations), and the ergodic theory of dynamical systems with nonzero Lyapunov exponents. The authors also present a detailed description of all basic examples of conservative systems with nonzero Lyapunov exponents, including the geodesic flows on compact surfaces of nonpositive curvature.

This book is aimed at graduate students specialising in dynamical systems and ergodic theory as well as anyone who wants to acquire a working knowledge of smooth ergodic theory and to learn how to use its tools. With more than 80 exercises, the book can be used as a primary textbook for an advanced course in smooth ergodic theory. The book is self-contained and only a basic knowledge of real analysis, measure theory, differential equations, and topology is required and, even so, the authors provide the reader with the necessary background definitions and results.
Preface vii
Part 1 The Core of the Theory
Chapter 1 Examples of Hyperbolic Dynamical Systems
3(30)
1.1 Anosov diffeomorphisms
4(4)
1.2 Anosov flows
8(5)
1.3 The Katok map of the 2-torus
13(10)
1.4 Diffeomorphisms with nonzero Lyapunov exponents on surfaces
23(4)
1.5 A flow with nonzero Lyapunov exponents
27(6)
Chapter 2 General Theory of Lyapunov Exponents
33(28)
2.1 Lyapunov exponents and their basic properties
33(5)
2.2 The Lyapunov and Perron regularity coefficients
38(3)
2.3 Lyapunov exponents for linear differential equations
41(10)
2.4 Forward and backward regularity. The Lyapunov-Perron regularity
51(5)
2.5 Lyapunov exponents for sequences of matrices
56(5)
Chapter 3 Lyapunov Stability Theory of Nonautonomous Equations
61(16)
3.1 Stability of solutions of ordinary differential equations
62(6)
3.2 Lyapunov absolute stability theorem
68(4)
3.3 Lyapunov conditional stability theorem
72(5)
Chapter 4 Elements of the Nonuniform Hyperbolicity Theory
77(22)
4.1 Dynamical systems with nonzero Lyapunov exponents
78(10)
4.2 Nonuniform complete hyperbolicity
88(3)
4.3 Regular sets
91(2)
4.4 Nonuniform partial hyperbolicity
93(1)
4.5 Holder continuity of invariant distributions
94(5)
Chapter 5 Cocycles over Dynamical Systems
99(14)
5.1 Cocycles and linear extensions
100(5)
5.2 Lyapunov exponents and Lyapunov-Perron regularity for cocycles
105(4)
5.3 Examples of measurable cocycles over dynamical systems
109(4)
Chapter 6 The Multiplicative Ergodic Theorem
113(20)
6.1 Lyapunov-Perron regularity for sequences of triangular matrices
114(6)
6.2 Proof of the Multiplicative Ergodic Theorem
120(4)
6.3 Normal forms of measurable cocycles
124(4)
6.4 Lyapunov charts
128(5)
Chapter 7 Local Manifold Theory
133(22)
7.1 Local stable manifolds
134(3)
7.2 An abstract version of the Stable Manifold Theorem
137(10)
7.3 Basic properties of stable and unstable manifolds
147(8)
Chapter 8 Absolute Continuity of Local Manifolds
155(16)
8.1 Absolute continuity of the holonomy map
157(4)
8.2 A proof of the absolute continuity theorem
161(6)
8.3 Computing the Jacobian of the holonomy map
167(1)
8.4 An invariant foliation that is not absolutely continuous
168(3)
Chapter 9 Ergodic Properties of Smooth Hyperbolic Measures
171(24)
9.1 Ergodicity of smooth hyperbolic measures
171(5)
9.2 Local ergodicity
176(7)
9.3 The entropy formula
183(12)
Chapter 10 Geodesic Flows on Surfaces of Nonpositive Curvature
195(20)
10.1 Preliminary information from Riemannian geometry
196(2)
10.2 Definition and local properties of geodesic flows
198(2)
10.3 Hyperbolic properties and Lyapunov exponents
200(5)
10.4 Ergodic properties
205(5)
10.5 The entropy formula for geodesic flows
210(5)
Part 2 Selected Advanced Topics
Chapter 11 Cone Technics
215(8)
11.1 Introduction
215(2)
11.2 Lyapunov functions
217(4)
11.3 Cocycles with values in the symplectic group
221(2)
Chapter 12 Partially Hyperbolic Diffeomorphisms with Nonzero Exponents
223(12)
12.1 Partial hyperbolicity
224(3)
12.2 Systems with negative central exponents
227(2)
12.3 Foliations that are not absolutely continuous
229(6)
Chapter 13 More Examples of Dynamical Systems with Nonzero Lyapunov Exponents
235(12)
13.1 Hyperbolic diffeomorphisms with countably many ergodic components
235(11)
13.2 The Shub-Wilkinson map
246(1)
Chapter 14 Anosov Rigidity
247(14)
14.1 The Anosov rigidity phenomenon. I
247(8)
14.2 The Anosov rigidity phenomenon. II
255(6)
Chapter 15 C1 Pathological Behavior: Pugh's Example
261(6)
Bibliography 267(6)
Index 273
Luis Barreira, Instituto Superior Tecnico, Lisbon, Portugal.

Yakov Pesin, Pennsylvania State University, State College, PA, USA.