Muutke küpsiste eelistusi

E-raamat: Introduction to Sparse Stochastic Processes

(École Polytechnique Fédérale de Lausanne), (École Polytechnique Fédérale de Lausanne)
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 21-Aug-2014
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781316054505
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 50,62 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 21-Aug-2014
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781316054505
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Providing a novel approach to sparsity, this comprehensive book presents the theory of stochastic processes that are ruled by linear stochastic differential equations, and sets out a general stochastic framework for developing efficient and practical nonlinear algorithms.

Providing a novel approach to sparsity, this comprehensive book presents the theory of stochastic processes that are ruled by linear stochastic differential equations, and that admit a parsimonious representation in a matched wavelet-like basis. Two key themes are the statistical property of infinite divisibility, which leads to two distinct types of behaviour - Gaussian and sparse - and the structural link between linear stochastic processes and spline functions, which is exploited to simplify the mathematical analysis. The core of the book is devoted to investigating sparse processes, including a complete description of their transform-domain statistics. The final part develops practical signal-processing algorithms that are based on these models, with special emphasis on biomedical image reconstruction. This is an ideal reference for graduate students and researchers with an interest in signal/image processing, compressed sensing, approximation theory, machine learning, or statistics.

Arvustused

'Over the last twenty years, sparse representation of images and signals became a very important topic in many applications, ranging from data compression, to biological vision, to medical imaging. The book An Introduction to Sparse Stochastic Processes by Unser and Tafti is the first work to systematically build a coherent framework for non-Gaussian processes with sparse representations by wavelets. Traditional concepts such as Karhunen-Loève analysis of Gaussian processes are nicely complemented by the wavelet analysis of Levy Processes which is constructed here. The framework presented here has a classical feel while accommodating the innovative impulses driving research in sparsity. The book is extremely systematic and at the same time clear and accessible, and can be recommended both to engineers interested in foundations and to mathematicians interested in applications.' David Donoho, Stanford University 'This is a fascinating book that connects the classical theory of generalised functions (distributions) to the modern sparsity-based view on signal processing, as well as stochastic processes. Some of the early motivations given by I. Gelfand on the importance of generalised functions came from physics and, indeed, signal processing and sampling. However, this is probably the first book that successfully links the more abstract theory with modern signal processing. A great strength of the monograph is that it considers both the continuous and the discrete model. It will be of interest to mathematicians and engineers having appreciations of mathematical and stochastic views of signal processing.' Anders Hansen, University of Cambridge

Muu info

A detailed guide to sparsity, providing a description of their transform-domain statistics and applying the models to practical algorithms.
Preface xiii
Notation xv
1 Introduction
1(18)
1.1 Sparsity: Occam's razor of modern signal processing?
1(1)
1.2 Sparse stochastic models: the step beyond Gaussianity
2(3)
1.3 From splines to stochastic processes, or when Schoenberg meets Levy
5(11)
1.3.1 Splines and Legos revisited
5(3)
1.3.2 Higher-degree polynomial splines
8(1)
1.3.3 Random splines, innovations, and Levy processes
9(3)
1.3.4 Wavelet analysis of Levy processes and M-term approximations
12(3)
1.3.5 Levy's wavelet-based synthesis of Brownian motion
15(1)
1.4 Historical notes: Paul Levy and his legacy
16(3)
2 Roadmap to the book
19(6)
2.1 On the implications of the innovation model
20(2)
2.1.1 Linear combination of sampled values
20(1)
2.1.2 Wavelet analysis
21(1)
2.2 Organization of the book
22(3)
3 Mathematical context and background
25(32)
3.1 Some classes of function spaces
25(7)
3.1.1 About the notation: mathematics vs. engineering
28(1)
3.1.2 Normed spaces
28(1)
3.1.3 Nuclear spaces
29(3)
3.2 Dual spaces and adjoint operators
32(3)
3.2.1 The dual of Lp spaces
33(1)
3.2.2 The duals of D and S
33(1)
3.2.3 Distinction between Hermitian and duality products
34(1)
3.3 Generalized functions
35(8)
3.3.1 Intuition and definition
35(1)
3.3.2 Operations on generalized functions
36(1)
3.3.3 The Fourier transform of generalized functions
37(1)
3.3.4 The kernel theorem
38(1)
3.3.5 Linear shift-invariant operators and convolutions
39(1)
3.3.6 Convolution operators on Lp(Rd)
40(3)
3.4 Probability theory
43(4)
3.4.1 Probability measures
43(1)
3.4.2 Joint probabilities and independence
44(1)
3.4.3 Characteristic functions in finite dimensions
45(1)
3.4.4 Characteristic functional in infinite dimensions
46(1)
3.5 Generalized random processes and fields
47(7)
3.5.1 Generalized random processes as collections of random variables
47(2)
3.5.2 Generalized random processes as random generalized functions
49(1)
3.5.3 Determination of statistics from the characteristic functional
49(2)
3.5.4 Operations on generalized stochastic processes
51(1)
3.5.5 Innovation processes
52(1)
3.5.6 Example: filtered white Gaussian noise
53(1)
3.6 Bibliographical pointers and historical notes
54(3)
4 Continuous-domain innovation models
57(32)
4.1 Introduction: from Gaussian to sparse probability distributions
58(1)
4.2 Levy exponents and infinitely divisible distributions
59(12)
4.2.1 Canonical Levy--Khintchine representation
60(4)
4.2.2 Deciphering the Levy--Khintchine formula
64(4)
4.2.3 Gaussian vs. sparse categorization
68(1)
4.2.4 Proofs of Theorems 4.1 and 4.2
69(2)
4.3 Finite-dimensional innovation model
71(2)
4.4 White Levy noises or innovations
73(11)
4.4.1 Specification of white noise in Schwartz' space S'
73(3)
4.4.2 Impulsive Poisson noise
76(2)
4.4.3 Properties of white noise
78(6)
4.5 Generalized stochastic processes and linear models
84(3)
4.5.1 Innovation models
84(1)
4.5.2 Existence and characterization of the solution
84(3)
4.6 Bibliographical notes
87(2)
5 Operators and their inverses
89(24)
5.1 Introductory example: first-order differential equation
90(2)
5.2 Shift-invariant inverse operators
92(3)
5.3 Stable differential systems in 1-D
95(2)
5.3.1 First-order differential operators with stable inverses
96(1)
5.3.2 Higher-order differential operators with stable inverses
96(1)
5.4 Unstable Nth-order differential systems
97(7)
5.4.1 First-order differential operators with unstable shift-invariant inverses
97(4)
5.4.2 Higher-order differential operators with unstable shift-invariant inverses
101(1)
5.4.3 Generalized boundary conditions
102(2)
5.3 Fractional-order operators
104(5)
5.5.1 Fractional derivatives in one dimension
104(3)
5.5.2 Fractional Laplacians
107(1)
5.5.3 Lp-stable inverses
108(1)
5.6 Discrete convolution operators
109(2)
5.7 Bibliographical notes
111(2)
6 Splines and wavelets
113(37)
6.1 From Legos to wavelets
113(5)
6.2 Basic concepts and definitions
118(6)
6.2.1 Spline-admissible operators
118(2)
6.2.2 Splines and operators
120(1)
6.2.3 Riesz bases
121(3)
6.2.4 Admissible wavelets
124(1)
6.3 First-order exponential B-splines and wavelets
124(3)
6.3.1 B-spline construction
125(1)
6.3.2 Interpolator in augmented-order spline space
126(1)
6.3.3 Differential wavelets
126(1)
6.4 Generalized B-spline basis
127(15)
6.4.1 B-spline properties
128(8)
6.4.2 B-spline factorization
136(1)
6.4.3 Polynomial B-splines
137(1)
6.4.4 Exponential B-splines
138(1)
6.4.5 Fractional B-splines
139(2)
6.4.6 Additional brands of univariate B-splines
141(1)
6.4.7 Multidimensional B-splines
141(1)
6.5 Generalized operator-like wavelets
142(5)
6.5.1 Multiresolution analysis of L2 (Rd)
142(1)
6.5.2 Multiresolution B-splines and the two-scale relation
143(1)
6.5.3 Construction of an operator-like wavelet basis
144(3)
6.6 Bibliographical notes
147(3)
7 Sparse stochastic processes
150(41)
7.1 Introductory example: non-Gaussian AR(1) processes
150(2)
7.2 General abstract characterization
152(6)
7.3 Non-Gaussian stationary processes
158(5)
7.3.1 Autocorrelation function and power spectrum
159(1)
7.3.2 Generalized increment process
160(1)
7.3.3 Generalized stationary Gaussian processes
161(1)
7.3.4 CARMA processes
162(1)
7.4 Levy processes and their higher-order extensions
163(13)
7.4.1 Levy processes
163(3)
7.4.2 Higher-order extensions of Levy processes
166(1)
7.4.3 Non-stationary Levy correlations
167(2)
7.4.4 Removal of long-range dependencies
169(3)
7.4.5 Examples of sparse processes
172(3)
7.4.6 Mixed processes
175(1)
7.5 Self-similar processes
176(11)
7.5.1 Stable fractal processes
177(3)
7.5.2 Fractional Brownian motion through the looking-glass
180(5)
7.5.3 Scale-invariant Poisson processes
185(2)
7.6 Bibliographical notes
187(4)
8 Sparse representations
191(32)
8.1 Decoupling of Levy processes: finite differences vs. wavelets
191(3)
8.2 Extended theoretical framework
194(3)
8.2.1 Discretization mechanism: sampling vs. projections
194(1)
8.2.2 Analysis of white noise with non-smooth functions
195(2)
8.3 Generalized increments for the decoupling of sample values
197(8)
8.3.1 First-order statistical characterization
199(1)
8.3.2 Higher-order statistical dependencies
200(1)
8.3.3 Generalized increments and stochastic difference equations
201(1)
8.3.4 Discrete whitening filter
202(1)
8.3.5 Robust localization
202(3)
8.4 Wavelet analysis
205(5)
8.4.1 Wavelet-domain statistics
206(2)
8.4.2 Higher-order wavelet dependencies and cumulants
208(2)
8.5 Optimal representation of Levy and AR(1) processes
210(12)
8.5.1 Generalized increments and first-order linear prediction
211(1)
8.5.2 Vector-matrix formulation
212(1)
8.5.3 Transform-domain statistics
212(4)
8.5.4 Comparison of orthogonal transforms
216(6)
8.6 Bibliographical notes
222(1)
9 Infinite divisibility and transform-domain statistics
223(25)
9.1 Composition of id laws, spectral mixing, and analysis of white noise
224(6)
9.2 Class C and unimodality
230(2)
9.3 Self-decomposable distributions
232(2)
9.4 Stable distributions
234(1)
9.5 Rate of decay
235(2)
9.6 Levy exponents and cumulants
237(2)
9.7 Semigroup property
239(3)
9.7.1 Gaussian case
241(1)
9.7.2 SαS case
241(1)
9.7.3 Compound-Poisson case
241(1)
9.7.4 General iterated-convolution interpretation
241(1)
9.8 Multiscale analysis
242(5)
9.8.1 Scale evolution of the pdf
243(1)
9.8.2 Scale evolution of the moments
244(2)
9.8.3 Asymptotic convergence to a Gaussian/stable distribution
246(1)
9.9 Notes and pointers to the literature
247(1)
10 Recovery of sparse signals
248(42)
10.1 Discretization of linear inverse problems
249(6)
10.1.1 Shift-invariant reconstruction subspace
249(3)
10.1.2 Finite-dimensional formulation
252(3)
10.2 MAP estimation and regularization
255(8)
10.2.1 Potential function
256(2)
10.2.2 LMMSE/Gaussian solution
258(1)
10.2.3 Proximal operators
259(2)
10.2.4 MAP estimation
261(2)
10.3 MAP reconstruction of biomedical images
263(14)
10.3.1 Scale-invariant image model and common numerical setup
264(1)
10.3.2 Deconvolution of fluorescence micrographs
265(4)
10.3.3 Magnetic resonance imaging
269(3)
10.3.4 X-ray tomography
272(4)
10.3.5 Discussion
276(1)
10.4 The quest for the minimum-error solution
277(9)
10.4.1 MMSE estimators for first-order processes
278(1)
10.4.2 Direct solution by belief propagation
279(4)
10.4.3 MMSE vs. MAP denoising of Levy processes
283(3)
10.5 Bibliographical notes
286(4)
11 Wavelet-domain methods
290(36)
11.1 Discretization of inverse problems in a wavelet basis
291(3)
11.1.1 Specification of wavelet-domain MAP estimator
292(1)
11.1.2 Evolution of the potential function across scales
293(1)
11.2 Wavelet-based methods for solving linear inverse problems
294(6)
11.2.1 Preliminaries
295(1)
11.2.2 Iterative shrinkage/thresholding algorithm
296(1)
11.2.3 Fast iterative shrinkage/thresholding algorithm
297(1)
11.2.4 Discussion of wavelet-based image reconstruction
298(2)
11.3 Study of wavelet-domain shrinkage estimators
300(13)
11.3.1 Pointwise MAP estimators for AWGN
301(1)
11.3.2 Pointwise MMSE estimators for AWGN
301(2)
11.3.3 Comparison of shrinkage functions: MAP vs. MMSE
303(9)
11.3.4 Conclusion on simple wavelet-domain shrinkage estimators
312(1)
11.4 Improved denoising by consistent cycle spinning
313(11)
11.4.1 First-order wavelets: design and implementation
313(2)
11.4.2 From wavelet bases to tight wavelet frames
315(3)
11.4.3 Iterative MAP denoising
318(2)
11.4.4 Iterative MMSE denoising
320(4)
11.5 Bibliographical notes
324(2)
12 Conclusion
326(2)
Appendix A Singular integrals
328(8)
A.1 Regularization of singular integrals by analytic continuation
329(2)
A.2 Fourier transform of homogeneous distributions
331(1)
A.3 Hadamard's finite part
332(2)
A.4 Some convolution integrals with singular kernels
334(2)
Appendix B Positive definiteness
336(8)
B.1 Positive definiteness and Bochner's theorem
336(3)
B.2 Conditionally positive--definite functions
339(3)
B.3 Levy--Khintchine formula from the point of view of generalized functions
342(2)
Appendix C Special functions
344(3)
C.1 Modified Bessel functions
344(1)
C.2 Gamma function
344(2)
C.3 Symmetric-alpha-stable distributions
346(1)
References 347(16)
Index 363
Michael Unser is Professor and Director of EPFL's Biomedical Imaging Group, Switzerland. He is a member of the Swiss Academy of Engineering Sciences, a Fellow of EURASIP, and a Fellow of the IEEE. Pouya D. Tafti is a data scientist currently residing in Germany, and a former member of the Biomedical Imaging Group at EPFL, where he conducted research on the theory and applications of probabilistic models for data.