List of algorithms |
|
ix | |
Preface |
|
xi | |
Nomenclature |
|
xiii | |
1 Random number generation |
|
1 | (40) |
|
1.1 Pseudo random number generators |
|
|
2 | (6) |
|
1.1.1 The linear congruential generator |
|
|
2 | (2) |
|
1.1.2 Quality of pseudo random number generators |
|
|
4 | (4) |
|
1.1.3 Pseudo random number generators in practice |
|
|
8 | (1) |
|
1.2 Discrete distributions |
|
|
8 | (3) |
|
1.3 The inverse transform method |
|
|
11 | (4) |
|
|
15 | (15) |
|
1.4.1 Basic rejection sampling |
|
|
15 | (3) |
|
1.4.2 Envelope rejection sampling |
|
|
18 | (4) |
|
1.4.3 Conditional distributions |
|
|
22 | (4) |
|
1.4.4 Geometric interpretation |
|
|
26 | (4) |
|
1.5 Transformation of random variables |
|
|
30 | (6) |
|
1.6 Special-purpose methods |
|
|
36 | (1) |
|
1.7 Summary and further reading |
|
|
36 | (1) |
|
|
37 | (4) |
2 Simulating statistical models |
|
41 | (28) |
|
2.1 Multivariate normal distributions |
|
|
41 | (4) |
|
|
45 | (5) |
|
|
50 | (8) |
|
2.3.1 Discrete state space |
|
|
51 | (5) |
|
2.3.2 Continuous state space |
|
|
56 | (2) |
|
|
58 | (9) |
|
2.5 Summary and further reading |
|
|
67 | (1) |
|
|
67 | (2) |
3 Monte Carlo methods |
|
69 | (40) |
|
3.1 Studying models via simulation |
|
|
69 | (5) |
|
3.2 Monte Carlo estimates |
|
|
74 | (10) |
|
3.2.1 Computing Monte Carlo estimates |
|
|
75 | (1) |
|
|
76 | (4) |
|
3.2.3 Choice of sample size |
|
|
80 | (2) |
|
3.2.4 Refined error bounds |
|
|
82 | (2) |
|
3.3 Variance reduction methods |
|
|
84 | (12) |
|
3.3.1 Importance sampling |
|
|
84 | (4) |
|
3.3.2 Antithetic variables |
|
|
88 | (5) |
|
|
93 | (3) |
|
3.4 Applications to statistical inference |
|
|
96 | (10) |
|
|
97 | (3) |
|
3.4.2 Confidence intervals |
|
|
100 | (3) |
|
|
103 | (3) |
|
3.5 Summary and further reading |
|
|
106 | (1) |
|
|
106 | (3) |
4 Markov Chain Monte Carlo methods |
|
109 | (72) |
|
4.1 The Metropolis-Hastings method |
|
|
110 | (15) |
|
4.1.1 Continuous state space |
|
|
110 | (3) |
|
4.1.2 Discrete state space |
|
|
113 | (3) |
|
4.1.3 Random walk Metropolis sampling |
|
|
116 | (3) |
|
4.1.4 The independence sampler |
|
|
119 | (1) |
|
4.1.5 Metropolis-Hastings with different move types |
|
|
120 | (5) |
|
4.2 Convergence of Markov Chain Monte Carlo methods |
|
|
125 | (12) |
|
4.2.1 Theoretical results |
|
|
125 | (4) |
|
4.2.2 Practical considerations |
|
|
129 | (8) |
|
4.3 Applications to Bayesian inference |
|
|
137 | (4) |
|
|
141 | (17) |
|
4.4.1 Description of the method |
|
|
141 | (5) |
|
4.4.2 Application to parameter estimation |
|
|
146 | (5) |
|
4.4.3 Applications to image processing |
|
|
151 | (7) |
|
4.5 Reversible Jump Markov Chain Monte Carlo |
|
|
158 | (20) |
|
4.5.1 Description of the method |
|
|
160 | (11) |
|
4.5.2 Bayesian inference for mixture distributions |
|
|
171 | (7) |
|
4.6 Summary and further reading |
|
|
178 | (1) |
|
|
178 | (3) |
5 Beyond Monte Carlo |
|
181 | (32) |
|
5.1 Approximate Bayesian Computation |
|
|
181 | (11) |
|
5.1.1 Basic Approximate Bayesian Computation |
|
|
182 | (6) |
|
5.1.2 Approximate Bayesian Computation with regression |
|
|
188 | (4) |
|
|
192 | (17) |
|
5.2.1 Bootstrap estimates |
|
|
192 | (5) |
|
5.2.2 Applications to statistical inference |
|
|
197 | (12) |
|
5.3 Summary and further reading |
|
|
209 | (1) |
|
|
209 | (4) |
6 Continuous-time models |
|
213 | (50) |
|
|
213 | (1) |
|
|
214 | (7) |
|
|
216 | (1) |
|
|
217 | (1) |
|
6.2.3 Interpolation and Brownian bridges |
|
|
218 | (3) |
|
6.3 Geometric Brownian motion |
|
|
221 | (3) |
|
6.4 Stochastic differential equations |
|
|
224 | (19) |
|
|
224 | (2) |
|
6.4.2 Stochastic analysis |
|
|
226 | (5) |
|
6.4.3 Discretisation schemes |
|
|
231 | (5) |
|
6.4.4 Discretisation error |
|
|
236 | (7) |
|
6.5 Monte Carlo estimates |
|
|
243 | (12) |
|
|
243 | (4) |
|
6.5.2 Variance reduction methods |
|
|
247 | (3) |
|
6.5.3 Multilevel Monte Carlo estimates |
|
|
250 | (5) |
|
6.6 Application to option pricing |
|
|
255 | (4) |
|
6.7 Summary and further reading |
|
|
259 | (1) |
|
|
260 | (3) |
Appendix A Probability reminders |
|
263 | (8) |
|
A.1 Events and probability |
|
|
263 | (3) |
|
A.2 Conditional probability |
|
|
266 | (2) |
|
|
268 | (1) |
|
|
269 | (1) |
|
|
270 | (1) |
Appendix B Programming in R |
|
271 | (28) |
|
|
271 | (1) |
|
|
272 | (10) |
|
B.2.1 Mathematical operations |
|
|
273 | (1) |
|
|
273 | (2) |
|
|
275 | (7) |
|
B.3 Programming principles |
|
|
282 | (10) |
|
B.3.1 Don't repeat yourself! |
|
|
283 | (3) |
|
B.3.2 Divide and conquer! |
|
|
286 | (4) |
|
|
290 | (2) |
|
B.4 Random number generation |
|
|
292 | (2) |
|
B.5 Summary and further reading |
|
|
294 | (1) |
|
|
294 | (5) |
Appendix C Answers to the exercises |
|
299 | (76) |
|
|
299 | (16) |
|
|
315 | (4) |
|
|
319 | (9) |
|
|
328 | (14) |
|
|
342 | (8) |
|
|
350 | (16) |
|
C.7 Answers for Appendix B |
|
|
366 | (9) |
References |
|
375 | (4) |
Index |
|
379 | |