Muutke küpsiste eelistusi

E-raamat: Introduction to Statistical Relational Learning

Contributions by (University of Maryland College Park), Edited by (University of Maryland College Park), Contributions by (Harvard University), Contributions by (University of Massachusetts), Edited by , Contributions by (Stanford University), Contributions by (University of Massachusetts), Contributions by (Hebrew University), Contributions by , Contributions by (Jozef Stefan Institute)
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 94,85 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Advanced statistical modeling and knowledge representation techniques for a newly emerging area of machine learning and probabilistic reasoning; includes introductory material, tutorials for different proposed approaches, and applications.

Handling inherent uncertainty and exploiting compositional structure are fundamental to understanding and designing large-scale systems. Statistical relational learning builds on ideas from probability theory and statistics to address uncertainty while incorporating tools from logic, databases, and programming languages to represent structure. In Introduction to Statistical Relational Learning, leading researchers in this emerging area of machine learning describe current formalisms, models, and algorithms that enable effective and robust reasoning about richly structured systems and data.

The early chapters provide tutorials for material used in later chapters, offering introductions to representation, inference and learning in graphical models, and logic. The book then describes object-oriented approaches, including probabilistic relational models, relational Markov networks, and probabilistic entity-relationship models as well as logic-based formalisms including Bayesian logic programs, Markov logic, and stochastic logic programs. Later chapters discuss such topics as probabilistic models with unknown objects, relational dependency networks, reinforcement learning in relational domains, and information extraction.

By presenting a variety of approaches, the book highlights commonalities and clarifies important differences among proposed approaches and, along the way, identifies important representational and algorithmic issues. Numerous applications are provided throughout.
Series Foreword xi
Preface xiii
Introduction
1(12)
Lise Getoor
Ben Taskar
Overview
1(1)
Brief History of Relational Learning
2(1)
Emerging Trends
3(1)
Statistical Relational Learning
3(2)
Chapter Map
5(3)
Outlook
8(5)
Graphical Models in a Nutshell
13(44)
Daphne Koller
Nir Friedman
Lise Getoor
Ben Taskar
Introduction
13(1)
Representation
14(8)
Inference
22(20)
Learning
42(12)
Conclusion
54(3)
Inductive Logic Programming in a Nutshell
57(36)
Saso Dzeroski
Introduction
57(1)
Logic Programming
58(6)
Inductive Logic Programming: Settings and Approaches
64(7)
Relational Classification Rules
71(4)
Relational Decision Trees
75(5)
Relational Association Rules
80(4)
Relational Distance-Based Methods
84(5)
Recent Trends in ILP and RDM
89(4)
An Introduction to Conditional Random Fields for Relational Learning
93(36)
Charles Sutton
Andrew McCallum
Introduction
93(1)
Graphical Models
94(6)
Linear-Chain Conditional Random Fields
100(8)
CRFs in General
108(8)
Skip-Chain CRFs
116(6)
Conclusion
122(7)
Probabilistic Relational Models
129(46)
Lise Getoor
Nir Friedman
Daphne Koller
Avi Pfeffer
Ben Taskar
Introduction
129(1)
PRM Representation
130(10)
The Difference between PRMs and Bayesian Networks
140(1)
PRMs with Structural Uncertainty
141(1)
Probabilistic Model of Link Structure
141(10)
PRMs with Class Hierarchies
151(8)
Inference in PRMs
159(2)
Learning
161(12)
Conclusion
173(2)
Relational Markov Networks
175(26)
Ben Taskar
Pieter Abbeel
Ming-Fai Wong
Daphne Koller
Introduction
175(2)
Relational Classification and Link Prediction
177(1)
Graph Structure and Subgraph Templates
178(2)
Undirected Models for Classification
180(4)
Learning the Models
184(3)
Experimental Results
187(10)
Discussion and Conclusions
197(4)
Probabilistic Entity-Relationship Models, PRMs, and Plate Models
201(38)
David Heckerman
Chris Meek
Daphne Koller
Introduction
201(1)
Background: Graphical Models
202(2)
The Basic Ideas
204(6)
Probabilistic Entity-Relationship Models
210(16)
Plate Models
226(2)
Probabilistic Relational Models
228(1)
Technical Details
229(4)
Extensions and Future Work
233(6)
Relational Dependency Networks
239(30)
Jennifer Neville
David Jensen
Introduction
239(3)
Dependency Networks
242(1)
Relational Dependency Networks
243(9)
Experiments
252(10)
Related Work
262(2)
Discussion and Future Work
264(5)
Logic-based Formalisms for Statistical Relational Learning
269(22)
James Cussens
Introduction
269(2)
Representation
271(7)
Inference
278(3)
Learning
281(6)
Conclusion
287(4)
Bayesian Logic Programming: Theory and Tool
291(32)
Kristian Kersting
Luc De Raedt
Introduction
291(2)
On Bayesian Networks and Logic Programs
293(3)
Bayesian Logic Programs
296(8)
Extensions of the Basic Framework
304(7)
Learning Bayesian Logic Programs
311(4)
Balios - The Engine for Basic Logic Programs
315(1)
Related Work
315(3)
Conclusions
318(5)
Stochastic Logic Programs: A Tutorial
323(16)
Stephen Muggleton
Niels Pahlavi
Introduction
323(1)
Mixing Deterministic and Probabilistic Choice
324(6)
Stochastic Grammars
330(3)
Stochastic Logic Programs
333(2)
Learning Techniques
335(2)
Conclusion
337(2)
Markov Logic: A Unifying Framework for Statistical Relational Learning
339(34)
Pedro Domingos
Matthew Richardson
The Need for a Unifying Framework
339(2)
Markov Networks
341(1)
First-Order Logic
342(2)
Markov Logic
344(6)
SRL Approaches
350(4)
SRL Tasks
354(2)
Inference
356(2)
Learning
358(2)
Experiments
360(7)
Conclusion
367(6)
Blog: Probabilistic Models with Unknown Objects
373(26)
Brian Milch
Bhaskara Marthi
Stuart Russell
David Sontag
Daniel L. Ong
Andrey Kolobov
Introduction
373(2)
Examples
375(3)
Syntax and Semantics: Possible Worlds
378(5)
Syntax and Semantics: Probabilities
383(5)
Evidence and Queries
388(1)
Inference
388(5)
Related Work
393(1)
Conclusions and Future Work
394(5)
The Design and Implementation of IBAL: A General-Purpose Probabilistic Language
399(34)
Am Pfeffer
Introduction
399(2)
The IBAL Language
401(6)
Examples
407(4)
Semantics
411(4)
Desiderata for Inference
415(1)
Related Approaches
416(3)
Inference
419(10)
Lessons Learned and Conclusion
429(4)
Lifted First-Order Probabilistic Inference
433(20)
Rodrigo de Salvo Braz
Eyal Amir
Dan Roth
Introduction
433(2)
Language, Semantics and Inference problem
435(2)
The First-Order Variable Elimination (Fove) algorithm
437(7)
An experiment
444(2)
Auxiliary operations
446(2)
Applicability of lifted inference
448(1)
Future Directions
449(1)
Conclusion
449(4)
Feature Generation and Selection in Multi-Relational Statistical Learning
453(24)
Alexandrin Popescul
Lyle H. Ungar
Introduction
453(5)
Detailed Methodology
458(5)
Experimental Evaluation
463(8)
Related Work and Discussion
471(1)
Conclusion
472(5)
Learning a New View of a Database: With an Application in Mammography
477(22)
Jesse Davis
Elizabeth Burnside
Ines Dutra
David Page
Raghu Ramakrishnan
Jude Shavlik
Vitor Santos Costa
Introduction
477(1)
View Learning for Mammography
478(4)
Naive View Learning Framework
482(1)
Initial Experiments
483(7)
Integrated View Learning Framework
490(1)
Further Experiments and Results
491(2)
Related Work
493(1)
Conclusions and Future Work
494(5)
Reinforcement Learning in Relational Domains: A Policy-Language Approach
499(36)
Alan Fern
Sung Wook Yoon
Robert Givan
Introduction
499(3)
Problem Setup
502(1)
Approximate Policy Iteration with a Policy Language Bias
503(4)
API for Relational Planning
507(9)
Bootstrapping
516(4)
Relational Planning Experiments
520(7)
Related Work
527(3)
Summary and Future Work
530(5)
Statistical Relational Learning for Natural Language Information Extraction
535(18)
Razvan C. Bunescu
Raymond J. Mooney
Introduction
535(1)
Background on Natural Language Processing
536(1)
Information Extraction
537(1)
Collective Information Extraction with RMNs
538(11)
Future Research on SRL for NLP
549(1)
Conclusions
550(3)
Global Inference for Entity and Relation Identification via a Linear Programming Formulation
553(28)
Dan Roth
Wen-tau Yih
Introduction
553(3)
The Relational Inference Problem
556(4)
Integer Linear Programming Inference
560(2)
Solving Integer Linear Programming
562(1)
Experiments
563(7)
Comparison with Other Inference Methods
570(6)
Conclusion
576(5)
Contributors 581(6)
Index 587