|
Part I Python and Statistics |
|
|
|
|
3 | (4) |
|
|
3 | (2) |
|
|
5 | (1) |
|
1.3 Accompanying Material |
|
|
5 | (2) |
|
|
7 | (42) |
|
|
8 | (7) |
|
2.2 Elements of Scientific Python Programming |
|
|
15 | (13) |
|
2.3 Interactive Programming---IPython/Jupyter |
|
|
28 | (11) |
|
2.4 Statistics Packages for Python |
|
|
39 | (4) |
|
|
43 | (2) |
|
|
45 | (4) |
|
|
49 | (10) |
|
|
49 | (5) |
|
|
54 | (1) |
|
|
54 | (1) |
|
3.4 Binary Data: NPZ Format |
|
|
55 | (1) |
|
|
56 | (1) |
|
|
56 | (3) |
|
|
59 | (28) |
|
|
59 | (3) |
|
|
62 | (4) |
|
|
66 | (1) |
|
4.4 Preparing Figures for Presentation |
|
|
67 | (3) |
|
4.5 Display of Statistical Data Sets |
|
|
70 | (12) |
|
|
82 | (5) |
|
Part II Distributions and Hypothesis Tests |
|
|
|
5 Basic Statistical Concepts |
|
|
87 | (18) |
|
5.1 Populations and Samples |
|
|
87 | (2) |
|
|
89 | (1) |
|
5.3 Probability Distributions |
|
|
90 | (4) |
|
|
94 | (1) |
|
|
94 | (11) |
|
6 Distributions of One Variable |
|
|
105 | (34) |
|
6.1 Characterizing a Distribution |
|
|
105 | (10) |
|
6.2 Discrete Distributions |
|
|
115 | (5) |
|
|
120 | (5) |
|
6.4 Continuous Distributions Derived from the Normal Distribution |
|
|
125 | (7) |
|
6.5 Other Continuous Distributions |
|
|
132 | (3) |
|
6.6 Confidence Intervals of Selected Statistical Parameters |
|
|
135 | (1) |
|
|
136 | (3) |
|
|
139 | (20) |
|
7.1 Typical Analysis Procedure |
|
|
139 | (5) |
|
7.2 Hypothesis Tests and Power Analyses |
|
|
144 | (8) |
|
7.3 Sensitivity and Specificity |
|
|
152 | (3) |
|
7.4 Receiver-Operating-Characteristic (ROC) Curve |
|
|
155 | (2) |
|
|
157 | (2) |
|
8 Tests of Means of Numerical Data |
|
|
159 | (22) |
|
8.1 Distribution of a Sample Mean |
|
|
159 | (5) |
|
8.2 Comparison of Two Groups |
|
|
164 | (4) |
|
8.3 Comparison of Multiple Groups |
|
|
168 | (8) |
|
8.4 Summary: Selecting the Right Test for Comparing Groups |
|
|
176 | (2) |
|
|
178 | (3) |
|
9 Tests on Categorical Data |
|
|
181 | (16) |
|
9.1 Proportions and Confidence Intervals |
|
|
182 | (1) |
|
9.2 Tests Using Frequency Tables |
|
|
183 | (11) |
|
|
194 | (3) |
|
10 Analysis of Survival Times |
|
|
197 | (8) |
|
10.1 Survival Distributions |
|
|
197 | (1) |
|
10.2 Survival Probabilities |
|
|
198 | (4) |
|
10.3 Comparing Survival Curves in Two Groups |
|
|
202 | (3) |
|
Part III Statistical Modeling |
|
|
|
11 Finding Patterns in Signals |
|
|
205 | (24) |
|
|
205 | (3) |
|
11.2 Correlation Coefficient |
|
|
208 | (3) |
|
11.3 Coefficient of Determination |
|
|
211 | (3) |
|
|
214 | (1) |
|
|
214 | (3) |
|
|
217 | (1) |
|
11.7 Time-Series Analysis |
|
|
218 | (11) |
|
12 Linear Regression Models |
|
|
229 | (36) |
|
|
230 | (2) |
|
12.2 Design Matrix and Formulas |
|
|
232 | (5) |
|
12.3 Linear Regression Analysis with Python |
|
|
237 | (4) |
|
12.4 Model Results of Linear Regression Models |
|
|
241 | (16) |
|
12.5 Assumptions and Interpretations of Linear Regression |
|
|
257 | (5) |
|
|
262 | (1) |
|
|
262 | (3) |
|
13 Generalized Linear Models |
|
|
265 | (10) |
|
13.1 Comparing and Modeling Ranked Data |
|
|
265 | (1) |
|
|
266 | (1) |
|
13.3 GLM 1: Logistic Regression |
|
|
267 | (3) |
|
13.4 GLM 2: Ordinal Logistic Regression |
|
|
270 | (4) |
|
|
274 | (1) |
|
|
275 | (8) |
|
14.1 Bayesian Versus Frequentist Interpretation |
|
|
275 | (2) |
|
14.2 The Bayesian Approach in the Age of Computers |
|
|
277 | (1) |
|
14.3 Example: Markov-Chain-Monte-Carlo Simulation |
|
|
278 | (2) |
|
|
280 | (3) |
Appendix A Useful Programming Tools |
|
283 | (10) |
Appendix B Solutions |
|
293 | (28) |
Appendix C Equations for Confidence Intervals |
|
321 | (2) |
Appendix D Web Ressources |
|
323 | (2) |
Glossary |
|
325 | (6) |
Bibliography |
|
331 | (2) |
Index |
|
333 | |