|
Part I Python and Statistics |
|
|
|
|
3 | (2) |
|
|
5 | (38) |
|
|
5 | (12) |
|
|
5 | (1) |
|
2.1.2 Distributions and Packages |
|
|
6 | (2) |
|
2.1.3 Installation of Python |
|
|
8 | (2) |
|
2.1.4 Installation of R and rpy2 |
|
|
10 | (1) |
|
2.1.5 Personalizing IPython/Jupyter |
|
|
11 | (3) |
|
|
14 | (1) |
|
2.1.7 First Python Programs |
|
|
15 | (2) |
|
2.2 Python Data Structures |
|
|
17 | (4) |
|
|
17 | (2) |
|
2.2.2 Indexing and Slicing |
|
|
19 | (1) |
|
|
19 | (2) |
|
2.3 IPython/Jupyrer: An Interactive Programming Environment |
|
|
21 | (6) |
|
2.3.1 First Session with the Qt Console |
|
|
22 | (2) |
|
|
24 | (2) |
|
|
26 | (1) |
|
2.4 Developing Python Programs |
|
|
27 | (8) |
|
2.4.1 Converting Interactive Commands into a Python Program |
|
|
27 | (3) |
|
2.4.2 Functions, Modules, and Packages |
|
|
30 | (4) |
|
|
34 | (1) |
|
|
34 | (1) |
|
2.5 Pandas: Data Structures for Statistics |
|
|
35 | (4) |
|
|
35 | (2) |
|
|
37 | (2) |
|
2.6 Statsmodels: Tools for Statistical Modeling |
|
|
39 | (1) |
|
2.7 Seaborn: Data Visualization |
|
|
40 | (1) |
|
|
41 | (1) |
|
|
42 | (1) |
|
|
43 | (8) |
|
3.1 Input from Text Files |
|
|
43 | (4) |
|
|
43 | (1) |
|
3.1.2 Reading ASCII-Data into Python |
|
|
44 | (3) |
|
|
47 | (2) |
|
3.3 Input from Other Formats |
|
|
49 | (2) |
|
|
49 | (2) |
|
4 Display of Statistical Data |
|
|
51 | (24) |
|
|
51 | (1) |
|
|
51 | (1) |
|
|
52 | (1) |
|
|
52 | (7) |
|
4.2.1 Functional and Object-Oriented Approaches to Plotting |
|
|
54 | (1) |
|
|
55 | (4) |
|
4.3 Displaying Statistical Datasets |
|
|
59 | (12) |
|
|
59 | (10) |
|
4.3.2 Bivariate and Multivariate Plots |
|
|
69 | (2) |
|
|
71 | (4) |
|
Part II Distributions and Hypothesis Tests |
|
|
|
|
75 | (14) |
|
5.1 Populations and Samples |
|
|
75 | (1) |
|
5.2 Probability Distributions |
|
|
76 | (3) |
|
5.2.1 Discrete Distributions |
|
|
77 | (1) |
|
5.2.2 Continuous Distributions |
|
|
77 | (1) |
|
5.2.3 Expected Value and Variance |
|
|
78 | (1) |
|
|
79 | (1) |
|
|
79 | (10) |
|
|
79 | (1) |
|
|
80 | (1) |
|
|
81 | (1) |
|
5.4.4 Design of Experiments |
|
|
82 | (4) |
|
|
86 | (1) |
|
5.4.6 Clinical Investigation Plan |
|
|
87 | (2) |
|
6 Distributions of One Variable |
|
|
89 | (32) |
|
6.1 Characterizing a Distribution |
|
|
89 | (10) |
|
6.1.1 Distribution Center |
|
|
89 | (2) |
|
6.1.2 Quantifying Variability |
|
|
91 | (5) |
|
6.1.3 Parameters Describing the Form of a Distribution |
|
|
96 | (2) |
|
6.1.4 Important Presentations of Probability Densities |
|
|
98 | (1) |
|
6.2 Discrete Distributions |
|
|
99 | (5) |
|
6.2.1 Bernoulli Distribution |
|
|
100 | (1) |
|
6.2.2 Binomial Distribution |
|
|
100 | (3) |
|
6.2.3 Poisson Distribution |
|
|
103 | (1) |
|
|
104 | (5) |
|
6.3.1 Examples of Normal Distributions |
|
|
107 | (1) |
|
6.3.2 Central Limit Theorem |
|
|
107 | (1) |
|
6.3.3 Distributions and Hypothesis Tests |
|
|
108 | (1) |
|
6.4 Continuous Distributions Derived from the Normal Distribution |
|
|
109 | (6) |
|
|
110 | (1) |
|
6.4.2 Chi-Square Distribution |
|
|
111 | (2) |
|
|
113 | (2) |
|
6.5 Other Continuous Distributions |
|
|
115 | (4) |
|
6.5.1 Lognormal Distribution |
|
|
116 | (1) |
|
6.5.2 Weibull Distribution |
|
|
116 | (2) |
|
6.5.3 Exponential Distribution |
|
|
118 | (1) |
|
6.5.4 Uniform Distribution |
|
|
118 | (1) |
|
|
119 | (2) |
|
|
121 | (18) |
|
7.1 Typical Analysis Procedure |
|
|
121 | (5) |
|
7.1.1 Data Screening and Outliers |
|
|
122 | (1) |
|
|
122 | (4) |
|
|
126 | (1) |
|
7.2 Hypothesis Concept, Errors, p-Value, and Sample Size |
|
|
126 | (8) |
|
|
126 | (1) |
|
7.2.2 Generalization and Applications |
|
|
127 | (1) |
|
7.2.3 The Interpretation of the p-Value |
|
|
128 | (1) |
|
|
129 | (2) |
|
|
131 | (3) |
|
7.3 Sensitivity and Specificity |
|
|
134 | (2) |
|
7.3.1 Related Calculations |
|
|
136 | (1) |
|
7.4 Receiver-Operating-Characteristic (ROC) Curve |
|
|
136 | (3) |
|
8 Tests of Means of Numerical Data |
|
|
139 | (20) |
|
8.1 Distribution of a Sample Mean |
|
|
139 | (3) |
|
8.1.1 One Sample t-Test for a Mean Value |
|
|
139 | (2) |
|
8.1.2 Wilcoxon Signed Rank Sum Test |
|
|
141 | (1) |
|
8.2 Comparison of Two Groups |
|
|
142 | (4) |
|
|
142 | (1) |
|
8.2.2 t-Test between Independent Groups |
|
|
143 | (1) |
|
8.2.3 Nonparametric Comparison of Two Groups: Mann-Whitney Test |
|
|
144 | (1) |
|
8.2.4 Statistical Hypothesis Tests vs Statistical Modeling |
|
|
144 | (2) |
|
8.3 Comparison of Multiple Groups |
|
|
146 | (9) |
|
8.3.1 Analysis of Variance (ANOVA) |
|
|
146 | (4) |
|
8.3.2 Multiple Comparisons |
|
|
150 | (2) |
|
8.3.3 Kruskal-Wallis Test |
|
|
152 | (1) |
|
|
152 | (2) |
|
|
154 | (1) |
|
8.4 Summary: Selecting the Right Test for Comparing Groups |
|
|
155 | (2) |
|
|
155 | (1) |
|
8.4.2 Hypothetical Examples |
|
|
156 | (1) |
|
|
157 | (2) |
|
9 Tests on Categorical Data |
|
|
159 | (16) |
|
|
160 | (2) |
|
9.1.1 Confidence Intervals |
|
|
160 | (1) |
|
|
160 | (1) |
|
|
161 | (1) |
|
|
162 | (9) |
|
9.2.1 One-Way Chi-Square Test |
|
|
162 | (1) |
|
9.2.2 Chi-Square Contingency Test |
|
|
163 | (2) |
|
9.2.3 Fisher's Exact Test |
|
|
165 | (4) |
|
|
169 | (1) |
|
|
170 | (1) |
|
|
171 | (4) |
|
10 Analysis of Survival Times |
|
|
175 | (8) |
|
10.1 Survival Distributions |
|
|
175 | (1) |
|
10.2 Survival Probabilities |
|
|
176 | (4) |
|
|
176 | (1) |
|
10.2.2 Kaplan--Meier Survival Curve |
|
|
177 | (3) |
|
10.3 Comparing Survival Curves in Two Groups |
|
|
180 | (3) |
|
Part III Statistical Modeling |
|
|
|
11 Linear Regression Models |
|
|
183 | (38) |
|
|
184 | (1) |
|
11.1.1 Correlation Coefficient |
|
|
184 | (1) |
|
|
184 | (1) |
|
11.2 General Linear Regression Model |
|
|
185 | (5) |
|
11.2.1 Example 1: Simple Linear Regression |
|
|
187 | (1) |
|
11.2.2 Example 2: Quadratic Fit |
|
|
187 | (1) |
|
11.2.3 Coefficient of Determination |
|
|
188 | (2) |
|
11.3 Patsy: The Formula Language |
|
|
190 | (3) |
|
|
190 | (3) |
|
11.4 Linear Regression Analysis with Python |
|
|
193 | (5) |
|
11.4.1 Example 1: Line Fit with Confidence Intervals |
|
|
193 | (1) |
|
11.4.2 Example 2: Noisy Quadratic Polynomial |
|
|
194 | (4) |
|
11.5 Model Results of Linear Regression Models |
|
|
198 | (16) |
|
11.5.1 Example: Tobacco and Alcohol in the UK |
|
|
198 | (2) |
|
11.5.2 Definitions for Regression with Intercept |
|
|
200 | (1) |
|
|
201 | (1) |
|
11.5.4 R2: The Adjusted R2 Value |
|
|
201 | (4) |
|
11.5.5 Model Coefficients and Their Interpretation |
|
|
205 | (4) |
|
11.5.6 Analysis of Residuals |
|
|
209 | (3) |
|
|
212 | (1) |
|
11.5.8 Regression Using Sklearn |
|
|
212 | (2) |
|
|
214 | (1) |
|
11.6 Assumptions of Linear Regression Models |
|
|
214 | (4) |
|
11.7 Interpreting the Results of Linear Regression Models |
|
|
218 | (1) |
|
|
219 | (1) |
|
|
220 | (1) |
|
12 Multivariate Data Analysis |
|
|
221 | (6) |
|
12.1 Visualizing Multivariate Correlations |
|
|
221 | (2) |
|
12.1.1 Scatterplot Matrix |
|
|
221 | (1) |
|
12.1.2 Correlation Matrix |
|
|
222 | (1) |
|
12.2 Multilinear Regression |
|
|
223 | (4) |
|
13 Tests on Discrete Data |
|
|
227 | (10) |
|
13.1 Comparing Groups of Ranked Data |
|
|
227 | (1) |
|
|
228 | (3) |
|
13.2.1 Example: The Challenger Disaster |
|
|
228 | (3) |
|
13.3 Generalized Linear Models |
|
|
231 | (1) |
|
13.3.1 Exponential Family of Distributions |
|
|
231 | (1) |
|
13.3.2 Linear Predictor and Link Function |
|
|
232 | (1) |
|
13.4 Ordinal Logistic Regression |
|
|
232 | (5) |
|
13.4.1 Problem Definition |
|
|
232 | (2) |
|
|
234 | (1) |
|
|
235 | (1) |
|
|
235 | (2) |
|
|
237 | (8) |
|
14.1 Bayesian vs. Frequentist Interpretation |
|
|
237 | (2) |
|
|
238 | (1) |
|
14.2 The Bayesian Approach in the Age of Computers |
|
|
239 | (1) |
|
14.3 Example: Analysis of the Challenger Disaster with a Markov-Chain--Monte-Carlo Simulation |
|
|
240 | (3) |
|
|
243 | (2) |
Solutions |
|
245 | (22) |
Glossary |
|
267 | (6) |
References |
|
273 | (2) |
Index |
|
275 | |