Preface |
|
xi | |
|
|
1 | (35) |
|
1.1 The bosonic point particle |
|
|
1 | (7) |
|
1.1.1 The classical point particle and its Dirac quantisation |
|
|
1 | (4) |
|
1.1.2 The BRST quantization of the point particle |
|
|
5 | (3) |
|
1.2 The super point particle |
|
|
8 | (16) |
|
1.2.1 The spinning particle |
|
|
9 | (8) |
|
1.2.2 The Brink-Schwarz superparticle |
|
|
17 | (4) |
|
1.2.3 Superspace formulation of the point particle |
|
|
21 | (3) |
|
1.3 The twistor approach to the massless point particle |
|
|
24 | (12) |
|
1.3.1 Twistors in four and three dimensions |
|
|
25 | (4) |
|
1.3.2 The twistor point particle actions |
|
|
29 | (7) |
|
2 The classical bosonic string |
|
|
36 | (16) |
|
|
36 | (13) |
|
|
42 | (4) |
|
|
46 | (3) |
|
2.2 The energy-momentum and angular momentum of the string |
|
|
49 | (1) |
|
2.3 A classical solution of the open string |
|
|
50 | (2) |
|
3 The quantum bosonic string |
|
|
52 | (29) |
|
3.1 The old covariant method |
|
|
54 | (10) |
|
|
55 | (7) |
|
|
62 | (2) |
|
|
64 | (17) |
|
|
64 | (8) |
|
3.2.2 The world-sheet energy-momentum tensor and BRST charge |
|
|
72 | (5) |
|
3.2.3 The physical state condition |
|
|
77 | (4) |
|
4 The light-cone approach |
|
|
81 | (19) |
|
4.1 The classical string in the light-cone |
|
|
81 | (8) |
|
4.2 The quantum string in the light-cone |
|
|
89 | (3) |
|
|
92 | (7) |
|
4.4 Light-cone string field theory |
|
|
99 | (1) |
|
5 Clifford algebras and spinors |
|
|
100 | (20) |
|
|
100 | (1) |
|
5.2 Clifford algebras in even dimensions |
|
|
101 | (5) |
|
5.3 Spinors in even dimensions |
|
|
106 | (5) |
|
5.4 Clifford algebras in odd dimensions |
|
|
111 | (3) |
|
|
114 | (2) |
|
5.6 Clifford algebras in space-times of arbitrary signature |
|
|
116 | (4) |
|
6 The classical superstring |
|
|
120 | (23) |
|
6.1 The Neveu-Schwarz-Ramond (NS-R) formulation |
|
|
121 | (12) |
|
6.1.1 The open superstring |
|
|
125 | (5) |
|
6.1.2 The closed superstring |
|
|
130 | (3) |
|
6.2 The Green-Schwarz formulation |
|
|
133 | (10) |
|
7 The quantum superstring |
|
|
143 | (17) |
|
7.1 The old covariant approach to the open superstring |
|
|
144 | (6) |
|
|
146 | (2) |
|
|
148 | (2) |
|
7.2 The GSO projector for the open string |
|
|
150 | (3) |
|
7.3 The old covariant approach to the closed superstring |
|
|
153 | (7) |
|
8 Conformal symmetry and two-dimensional field theory |
|
|
160 | (50) |
|
8.1 Conformal transformations |
|
|
161 | (10) |
|
8.1.1 Conformal transformations in D dimensions |
|
|
161 | (2) |
|
8.1.2 Conformal transformations in two dimensions |
|
|
163 | (8) |
|
8.2 Conformally invariant two-dimensional field theories |
|
|
171 | (10) |
|
8.2.1 Conformally invariant two-dimensional classical theories |
|
|
171 | (2) |
|
8.2.2 Conformal Ward identities |
|
|
173 | (8) |
|
8.3 Constraints due to global conformal transformations |
|
|
181 | (3) |
|
8.4 Transformations of the energy-momentum tensor |
|
|
184 | (3) |
|
8.5 Operator product expansions |
|
|
187 | (2) |
|
|
189 | (3) |
|
|
192 | (4) |
|
8.8 States, modes and primary fields |
|
|
196 | (3) |
|
8.9 Representations of the Virasoro algebra and minimal models |
|
|
199 | (11) |
|
9 Conformal symmetry and string theory |
|
|
210 | (30) |
|
|
210 | (12) |
|
|
210 | (9) |
|
|
219 | (3) |
|
|
222 | (5) |
|
9.3 Application to string theory |
|
|
227 | (8) |
|
9.3.1 Mapping the string to the Riemann sphere |
|
|
227 | (5) |
|
9.3.2 Construction of string theories |
|
|
232 | (3) |
|
9.4 The free field representation of the minimal models |
|
|
235 | (5) |
|
10 String compactification and the heterotic string |
|
|
240 | (32) |
|
10.1 Compactification on a circle |
|
|
240 | (7) |
|
10.2 Torus compactification |
|
|
247 | (6) |
|
10.3 Compactification in the presence of background fields |
|
|
253 | (4) |
|
10.4 Description of the moduli space |
|
|
257 | (4) |
|
10.5 Heterotic compactification |
|
|
261 | (3) |
|
10.6 The heterotic string |
|
|
264 | (8) |
|
11 The physical states and the no-ghost theorem |
|
|
272 | (21) |
|
11.1 The no-ghost theorem |
|
|
272 | (9) |
|
11.2 The zero-norm physical states |
|
|
281 | (4) |
|
11.3 The physical state projector |
|
|
285 | (2) |
|
|
287 | (6) |
|
12 Gauge covariant string theory |
|
|
293 | (27) |
|
|
294 | (6) |
|
|
300 | (6) |
|
12.3 Derivation of the solution |
|
|
306 | (4) |
|
12.4 The gauge covariant closed string |
|
|
310 | (5) |
|
12.5 The gauge covariant superstring |
|
|
315 | (5) |
|
13 Supergravity theories in four, ten and eleven dimensions |
|
|
320 | (100) |
|
13.1 Four ways to construct supergravity theories |
|
|
321 | (25) |
|
13.1.1 The Noether method |
|
|
323 | (8) |
|
13.1.2 The on-shell superspace method |
|
|
331 | (8) |
|
13.1.3 Gauging of space-time groups |
|
|
339 | (3) |
|
13.1.4 Dimensional reduction |
|
|
342 | (4) |
|
13.2 Non-linear realisations |
|
|
346 | (15) |
|
13.3 Eleven-dimensional supergravity |
|
|
361 | (5) |
|
13.4 The IIA supergravity theory |
|
|
366 | (8) |
|
13.5 The IIB supergravity theory |
|
|
374 | (9) |
|
13.5.1 The algebra and field content |
|
|
375 | (3) |
|
13.5.2 The equations of motion |
|
|
378 | (2) |
|
13.5.3 The SL(2, R) version |
|
|
380 | (3) |
|
13.6 Symmetries of the maximal supergravity theories in dimensions less than ten |
|
|
383 | (7) |
|
13.7 Type I supergravity and supersymmetric Yang-Mills theories in ten dimensions |
|
|
390 | (2) |
|
13.8 Solutions of the supergravity theories |
|
|
392 | (28) |
|
13.8.1 Solutions in a generic theory |
|
|
392 | (16) |
|
13.8.2 Brane solutions in eleven-dimensional supergravity |
|
|
408 | (3) |
|
13.8.3 Brane solutions in the ten-dimensional maximal supergravity theories |
|
|
411 | (2) |
|
13.8.4 Brane charges and the preservation of supersymmetry |
|
|
413 | (7) |
|
|
420 | (40) |
|
|
420 | (4) |
|
14.2 Types of superbranes |
|
|
424 | (6) |
|
|
430 | (4) |
|
|
434 | (1) |
|
|
435 | (9) |
|
14.6 Solutions of the 5-brane of M theory |
|
|
444 | (8) |
|
|
445 | (3) |
|
14.6.2 The self-dual string |
|
|
448 | (4) |
|
14.7 Five-brane dynamics and the low energy effective action of the N = 2 Yang-Mills theory |
|
|
452 | (8) |
|
|
460 | (25) |
|
|
461 | (8) |
|
15.2 Super D-branes in the NS-R formulation |
|
|
469 | (6) |
|
15.3 D-branes in the Green-Schwarz formulation |
|
|
475 | (10) |
|
16 String theory and Lie algebras |
|
|
485 | (65) |
|
16.1 Finite dimensional and affine Lie algebras |
|
|
485 | (27) |
|
16.1.1 A review of finite-dimensional Lie algebras and lattices |
|
|
485 | (17) |
|
16.1.2 Representations of finite dimensional semi-simple Lie algebras |
|
|
502 | (7) |
|
16.1.3 Affine Lie algebras |
|
|
509 | (3) |
|
|
512 | (4) |
|
|
516 | (3) |
|
16.4 Very extended and over-extended Lie algebras |
|
|
519 | (5) |
|
16.5 Weights and inverse Cartan matrix of En |
|
|
524 | (2) |
|
16.6 Low level analysis of Lorentzian Kac-Moody algebras |
|
|
526 | (6) |
|
16.6.1 The adjoint representation |
|
|
526 | (2) |
|
16.6.2 All representations |
|
|
528 | (4) |
|
16.7 The Kac-Moody algebra E11 |
|
|
532 | (9) |
|
|
532 | (4) |
|
16.7.2 The l1 representation of E11 |
|
|
536 | (3) |
|
16.7.3 The Cartan involution invariant subalgebra of a Kac-Moody algebra |
|
|
539 | (2) |
|
16.8 String vertex operators and Lie algebras |
|
|
541 | (9) |
|
17 Symmetries of string theory |
|
|
550 | (62) |
|
|
550 | (6) |
|
17.2 Electromagnetic duality |
|
|
556 | (13) |
|
|
569 | (4) |
|
|
573 | (8) |
|
|
581 | (31) |
|
17.5.1 The eleven-dimensional theory |
|
|
581 | (5) |
|
17.5.2 The IIA and IIB theories |
|
|
586 | (9) |
|
17.5.3 The common origin of the eleven-dimensional, IIA and IIB theories |
|
|
595 | (3) |
|
17.5.4 Theories in less than ten dimensions |
|
|
598 | (3) |
|
17.5.5 Duality symmetries and conditions |
|
|
601 | (4) |
|
17.5.6 Brane charges, the l1 representation and generalised space-time |
|
|
605 | (4) |
|
17.5.7 Weyl transformations of E11 and the non-linear realisation of its Cartan sub-algebra |
|
|
609 | (3) |
|
|
612 | (54) |
|
18.1 Duality, factorisation and the origins of string theory |
|
|
612 | (21) |
|
18.2 The path integral approach |
|
|
633 | (14) |
|
18.3 The group theoretic approach |
|
|
647 | (10) |
|
18.4 Interacting open string field theory |
|
|
657 | (9) |
|
18.4.1 Light-cone string field theory |
|
|
657 | (5) |
|
18.4.2 Mapping the interacting string |
|
|
662 | (2) |
|
18.4.3 A brief discussion of interacting gauge covariant string field theory |
|
|
664 | (2) |
|
Appendix A The Dirac and BRST methods of quantisation |
|
|
666 | (7) |
|
|
666 | (2) |
|
|
668 | (5) |
|
Appendix B Two-dimensional light-cone and spinor conventions |
|
|
673 | (3) |
|
B.1 Light-cone coordinates |
|
|
673 | (1) |
|
|
674 | (2) |
|
Appendix C The relationship between S2 and the Riemann sphere |
|
|
676 | (3) |
|
Appendix D Some properties of the classical Lie algebras |
|
|
679 | (5) |
|
|
679 | (1) |
|
|
680 | (1) |
|
|
681 | (1) |
|
|
681 | (1) |
|
|
682 | (1) |
|
|
682 | (1) |
|
|
683 | (1) |
Chapter quote acknowledgements |
|
684 | (1) |
References |
|
685 | (21) |
Index |
|
706 | |