Muutke küpsiste eelistusi

E-raamat: Introduction to Symmetric Functions and Their Combinatorics

  • Formaat - PDF+DRM
  • Hind: 72,93 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book is a reader-friendly introduction to the theory of symmetric functions, and it includes fundamental topics such as the monomial, elementary, homogeneous, and Schur function bases; the skew Schur functions; the Jacobi-Trudi identities; the involution $\omega$; the Hall inner product; Cauchy's formula; the RSK correspondence and how to implement it with both insertion and growth diagrams; the Pieri rules; the Murnaghan-Nakayama rule; Knuth equivalence; jeu de taquin; and the Littlewood-Richardson rule. The book also includes glimpses of recent developments and active areas of research, including Grothendieck polynomials, dual stable Grothendieck polynomials, Stanley's chromatic symmetric function, and Stanley's chromatic tree conjecture. Written in a conversational style, the book contains many motivating and illustrative examples. Whenever possible it takes a combinatorial approach, using bijections, involutions, and combinatorial ideas to prove algebraic results.

The prerequisites for this book are minimal-familiarity with linear algebra, partitions, and generating functions is all one needs to get started. This makes the book accessible to a wide array of undergraduates interested in combinatorics.
Preface ix
Chapter 1 Symmetric Polynomials, the Monomial Symmetric Polynomials, and Symmetric Functions
1(22)
§1.1 Symmetric Polynomials
2(5)
§1.2 The Monomial Symmetric Polynomials
7(3)
§1.3 Symmetric Functions
10(9)
§1.4 Problems
19(2)
§1.5 Notes
21(2)
Chapter 2 The Elementary, Complete Homogeneous, and Power Sum Symmetric Functions
23(30)
§2.1 The Elementary Symmetric Functions
23(15)
§2.2 The Complete Homogeneous Symmetric Functions
38(6)
§2.3 The Power Sum Symmetric Functions
44(5)
§2.4 Problems
49(4)
Chapter 3 Interlude: Evaluations of Symmetric Functions
53(22)
§3.1 Symmetric Function Identities
53(4)
§3.2 Binomial Coefficients
57(3)
§3.3 Stirling Numbers of the First and Second Kinds
60(4)
§3.4 g-Binomial Coefficients
64(7)
§3.5 Problems
71(2)
§3.6 Notes
73(2)
Chapter 4 Schur Polynomials and Schur Functions
75(44)
§4.1 Schur Functions and Semistandard Tableaux
75(14)
§4.2 Schur Polynomials as Ratios of Determinants
89(22)
§4.3 Problems
111(5)
§4.4 Notes
116(3)
Chapter 5 Interlude: A Rogues' Gallery of Symmetric Functions
119(38)
§5.1 Skew Schur Functions
119(10)
§5.2 Stable Grothendieck Polynomials
129(8)
§5.3 Dual Stable Grothendieck Polynomials
137(7)
§5.4 The Chromatic Symmetric Function
144(9)
§5.5 Problems
153(3)
§5.6 Notes
156(1)
Chapter 6 The Jacobi TYudi Identities and an Involution on A
157(34)
§6.1 The First Jacobi-Trudi Identity
157(14)
§6.2 The Second Jacobi-Trudi Identity
171(7)
§6.3 The Involution u
178(5)
§6.4 Problems
183(6)
§6.5 Notes
189(2)
Chapter 7 The Hall Inner Product
191(18)
§7.1 Inner Products on A
191(5)
§7.2 The Hall Inner Product and Cauchy's Formula
196(5)
§7.3 The Hall Inner Product on the Power Sum Symmetric Functions
201(5)
§7.4 Problems
206(1)
§7.5 Notes
207(2)
Chapter 8 The Robinson-Schensted-Knuth Correspondence
209(38)
§8.1 RSK Insertion: Constructing P(ir)
210(13)
§8.2 Constructing Q(ir)
223(9)
§8.3 Implementing RSK with Growth Diagrams
232(10)
§8.4 Problems
242(3)
§8.5 Notes
245(2)
Chapter 9 Special Products Involving Schur Functions
247(24)
§9.1 The Pieri Rules
248(8)
§9.2 The Murnaghan-Nakayama Rule
256(13)
§9.3 Problems
269(2)
Chapter 10 The Littlewood-Richardson Rule
271(38)
§10.1 Products of Tableaux
272(6)
§10.2 Knuth Equivalence
278(7)
§10.3 The Relationship Between P and word
285(6)
§10.4 The Littlewood-Richardson Rule
291(12)
§10.5 Problems
303(4)
§10.6 Notes
307(2)
Appendix A Linear Algebra
309(14)
§A.1 Fields and Vector Spaces
309(3)
§A.2 Bases and Linear Transformations
312(4)
§A.3 Inner Products and Dual Bases
316(4)
§A.4 Problems
320(3)
Appendix B Partitions
323(4)
§B.1 Partitions and a Generating Function
323(2)
§B.2 Problems
325(2)
Appendix C Permutations
327(10)
§C.1 Permutations as Bijections
327(4)
§C.2 Determinants and Permutations
331(3)
§C.3 Problems
334(3)
Bibliography 337(4)
Index 341
Eric S. Egge, Carleton College, Northfield, MN.