Preface |
|
ix | |
|
Chapter 1 Symmetric Polynomials, the Monomial Symmetric Polynomials, and Symmetric Functions |
|
|
1 | (22) |
|
§1.1 Symmetric Polynomials |
|
|
2 | (5) |
|
§1.2 The Monomial Symmetric Polynomials |
|
|
7 | (3) |
|
|
10 | (9) |
|
|
19 | (2) |
|
|
21 | (2) |
|
Chapter 2 The Elementary, Complete Homogeneous, and Power Sum Symmetric Functions |
|
|
23 | (30) |
|
§2.1 The Elementary Symmetric Functions |
|
|
23 | (15) |
|
§2.2 The Complete Homogeneous Symmetric Functions |
|
|
38 | (6) |
|
§2.3 The Power Sum Symmetric Functions |
|
|
44 | (5) |
|
|
49 | (4) |
|
Chapter 3 Interlude: Evaluations of Symmetric Functions |
|
|
53 | (22) |
|
§3.1 Symmetric Function Identities |
|
|
53 | (4) |
|
§3.2 Binomial Coefficients |
|
|
57 | (3) |
|
§3.3 Stirling Numbers of the First and Second Kinds |
|
|
60 | (4) |
|
§3.4 g-Binomial Coefficients |
|
|
64 | (7) |
|
|
71 | (2) |
|
|
73 | (2) |
|
Chapter 4 Schur Polynomials and Schur Functions |
|
|
75 | (44) |
|
§4.1 Schur Functions and Semistandard Tableaux |
|
|
75 | (14) |
|
§4.2 Schur Polynomials as Ratios of Determinants |
|
|
89 | (22) |
|
|
111 | (5) |
|
|
116 | (3) |
|
Chapter 5 Interlude: A Rogues' Gallery of Symmetric Functions |
|
|
119 | (38) |
|
§5.1 Skew Schur Functions |
|
|
119 | (10) |
|
§5.2 Stable Grothendieck Polynomials |
|
|
129 | (8) |
|
§5.3 Dual Stable Grothendieck Polynomials |
|
|
137 | (7) |
|
§5.4 The Chromatic Symmetric Function |
|
|
144 | (9) |
|
|
153 | (3) |
|
|
156 | (1) |
|
Chapter 6 The Jacobi TYudi Identities and an Involution on A |
|
|
157 | (34) |
|
§6.1 The First Jacobi-Trudi Identity |
|
|
157 | (14) |
|
§6.2 The Second Jacobi-Trudi Identity |
|
|
171 | (7) |
|
|
178 | (5) |
|
|
183 | (6) |
|
|
189 | (2) |
|
Chapter 7 The Hall Inner Product |
|
|
191 | (18) |
|
|
191 | (5) |
|
§7.2 The Hall Inner Product and Cauchy's Formula |
|
|
196 | (5) |
|
§7.3 The Hall Inner Product on the Power Sum Symmetric Functions |
|
|
201 | (5) |
|
|
206 | (1) |
|
|
207 | (2) |
|
Chapter 8 The Robinson-Schensted-Knuth Correspondence |
|
|
209 | (38) |
|
§8.1 RSK Insertion: Constructing P(ir) |
|
|
210 | (13) |
|
|
223 | (9) |
|
§8.3 Implementing RSK with Growth Diagrams |
|
|
232 | (10) |
|
|
242 | (3) |
|
|
245 | (2) |
|
Chapter 9 Special Products Involving Schur Functions |
|
|
247 | (24) |
|
|
248 | (8) |
|
§9.2 The Murnaghan-Nakayama Rule |
|
|
256 | (13) |
|
|
269 | (2) |
|
Chapter 10 The Littlewood-Richardson Rule |
|
|
271 | (38) |
|
§10.1 Products of Tableaux |
|
|
272 | (6) |
|
|
278 | (7) |
|
§10.3 The Relationship Between P and word |
|
|
285 | (6) |
|
§10.4 The Littlewood-Richardson Rule |
|
|
291 | (12) |
|
|
303 | (4) |
|
|
307 | (2) |
|
Appendix A Linear Algebra |
|
|
309 | (14) |
|
§A.1 Fields and Vector Spaces |
|
|
309 | (3) |
|
§A.2 Bases and Linear Transformations |
|
|
312 | (4) |
|
§A.3 Inner Products and Dual Bases |
|
|
316 | (4) |
|
|
320 | (3) |
|
|
323 | (4) |
|
§B.1 Partitions and a Generating Function |
|
|
323 | (2) |
|
|
325 | (2) |
|
|
327 | (10) |
|
§C.1 Permutations as Bijections |
|
|
327 | (4) |
|
§C.2 Determinants and Permutations |
|
|
331 | (3) |
|
|
334 | (3) |
Bibliography |
|
337 | (4) |
Index |
|
341 | |