Muutke küpsiste eelistusi

E-raamat: Introduction to System Modeling and Control

(Boise State University, USA)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 21-Jan-2022
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119842903
  • Formaat - PDF+DRM
  • Hind: 162,96 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 21-Jan-2022
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119842903

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"This book is an introduction to modeling and control for students in electrical and mechanical engineering. It begins by explaining the need for control in the form of a description of how an airplane flies using several figures to illustrate the specifics. It then moves on to a review of Laplace transform theory and the solution of differential equations using it. Later chapters explore concepts in modeling such as a review of Newton's laws, torque and moment of inertia, two gear systems, and more. Thebook closes with chapters on the notion of statespace models and their stability, designing trajectory tracking controllers, and state and parameter estimation"--

A practical and straightforward exploration of the basic tools for the modeling, analysis, and design of control systems

In An Introduction to System Modeling and Control, Dr. Chiasson delivers an accessible and intuitive guide to understanding modeling and control for students in electrical, mechanical, and aerospace/aeronautical engineering. The book begins with an introduction to the need for control by describing how an aircraft flies complete with figures illustrating roll, pitch, and yaw control using its ailerons, elevators, and rudder, respectively. The book moves on to rigid body dynamics about a single axis (gears, cart rolling down an incline) and then to modeling DC motors, DC tachometers, and optical encoders. Using the transfer function representation of these dynamic models, PID controllers are introduced as an effective way to track step inputs and reject constant disturbances.

It is further shown how any transfer function model can be stabilized using output pole placement and on how two-degree of freedom controllers can be used to eliminate overshoot in step responses. Bode and Nyquist theory are then presented with an emphasis on how they give a quantitative insight into a control system's robustness and sensitivity. An Introduction to System Modeling and Control closes with chapters on modeling an inverted pendulum and a magnetic levitation system, trajectory tracking control using state feedback, and state estimation. In addition the book offers:

  • A complete set of MATLAB/SIMULINK files for examples and problems included in the book.
  • A set of lecture slides for each chapter.
  • A solutions manual with recommended problems to assign.
  • An analysis of the robustness and sensitivity of four different controller designs for an inverted pendulum (cart-pole).

Perfect for electrical, mechanical, and aerospace/aeronautical engineering students, An Introduction to System Modeling and Control will also be an invaluable addition to the libraries of practicing engineers.

Preface ix
About the Companion Website xiv
1 Introduction
1(16)
1.1 Aircraft
1(6)
1.2 Quadrotors
7(5)
1.3 Inverted Pendulum
12(1)
1.4 Magnetic Levitation
13(2)
1.5 General Control Problem
15(2)
2 Laplace Transforms
17(32)
2.1 Laplace Transform Properties
20(4)
2.2 Partial Fraction Expansion
24(11)
2.3 Poles and Zeros
35(1)
2.4 Poles and Partial Fractions
36(13)
Appendix: Exponential Function
39(4)
Problems
43(6)
3 Differential Equations and Stability
49(40)
3.1 Differential Equations
49(3)
3.2 Phasor Method of Solution
52(5)
3.3 Final Value Theorem
57(5)
3.4 Stable Transfer Functions
62(3)
3.5 Routh-Hurwitz Stability Test
65(24)
Problems
77(12)
4 Mass-Spring-Damper Systems
89(22)
4.1 Mechanical Work
89(1)
4.2 Modeling Mass-Spring-Damper Systems
90(6)
4.3 Simulation
96(15)
Problems
100(11)
5 Rigid Body Rotational Dynamics
111(38)
5.1 Moment of Inertia
111(1)
5.2 Newton's Law of Rotational Motion
112(8)
5.3 Gears
120(7)
5.4 Rolling Cylinder
127(22)
Problems
135(14)
6 The Physics of the DC Motor
149(36)
6.1 Magnetic Force
149(2)
6.2 Single-Loop Motor
151(4)
6.3 Faraday's Law
155(8)
6.4 Dynamic Equations of the DC Motor
163(2)
6.5 Optical Encoder Model
165(3)
6.6 Tachometer for a DC Machine*
168(2)
6.7 The Multiloop DC Motor*
170(15)
Problems
175(10)
7 Block Diagrams
185(18)
7.1 Block Diagram for a DC Motor
185(2)
7.2 Block Diagram Reduction
187(16)
Problems
197(6)
8 System Responses
203(30)
8.1 First-Order System Response
203(2)
8.2 Second-Order System Response
205(12)
8.3 Second-Order Systems with Zeros
217(5)
8.4 Third-Order Systems
222(11)
Appendix: Root Locus Matlab File
224(1)
Problems
224(9)
9 Tracking and Disturbance Rejection
233(52)
9.1 Servomechanism
233(6)
9.2 Control of a DC Servo Motor
239(13)
9.3 Theory of Tracking and Disturbance Rejection
252(4)
9.4 Internal Model Principle
256(2)
9.5 Design Example: PI-D Control of Aircraft Pitch
258(7)
9.6 Model Uncertainty and Feedback*
265(20)
Problems
273(12)
10 Pole Placement, 2 DOF Controllers, and Internal Stability
285(76)
10.1 Output Pole Placement
285(13)
10.2 Two Degrees of Freedom Controllers
298(10)
10.3 Internal Stability
308(8)
10.4 Design Example: 2 DOF Control of Aircraft Pitch
316(5)
10.5 Design Example: Satellite with Solar Panels (Collocated Case)
321(40)
Appendix: Output Pole Placement
324(4)
Appendix: Multinomial Expansions
328(1)
Appendix: Overshoot
329(6)
Appendix: Unstable Pole-Zero Cancellation
335(1)
Appendix: Undershoot
336(3)
Problems
339(22)
11 Frequency Response Methods
361(86)
11.1 Bode Diagrams
361(22)
11.2 Nyquist Theory
383(19)
11.3 Relative Stability: Gain and Phase Margins
402(7)
11.4 Closed-Loop Bandwidth
409(5)
11.5 Lead and Lag Compensation
414(5)
11.6 Double Integrator Control via Lead-Lag Compensation
419(7)
11.7 Inverted Pendulum with Output Y(s) = X(s) + (l + J/ml)θ(s)
426(21)
Appendix: Bode and Nyquist Plots in Matlab
427(1)
Problems
428(19)
12 Root Locus
447(50)
12.1 Angle Condition and Root Locus Rules
449(8)
12.2 Asymptotes and Their Real Axis Intersection
457(6)
12.3 Angles of Departure
463(18)
12.4 Effect of Open-Loop Poles on the Root Locus
481(1)
12.5 Effect of Open-Loop Zeros on the Root Locus
482(1)
12.6 Breakaway Points and the Root Locus
483(1)
12.7 Design Example: Satellite with Solar Panels (Noncollocated)
484(13)
Problems
488(9)
13 Inverted Pendulum, Magnetic Levitation, and Cart on a Track
497(40)
13.1 Inverted Pendulum
497(9)
13.2 Linearization of Nonlinear Models
506(4)
13.3 Magnetic Levitation
510(6)
13.4 Cart on a Track System
516(21)
Problems
521(16)
14 State Variables
537(32)
14.1 Statespace Form
537(2)
14.2 Transfer Function to Statespace
539(12)
14.3 Laplace Transform of the Statespace Equations
551(3)
14.4 Fundamental Matrix Φ
554(4)
14.5 Solution of the Statespace Equation*
558(3)
14.6 Discretization of a Statespace Model*
561(8)
Problems
563(6)
15 State Feedback
569(74)
15.1 Two Examples
569(9)
15.2 General State Feedback Trajectory Tracking
578(1)
15.3 Matrix Inverses and the Cay ley-Hamilton Theorem
579(5)
15.4 Stabilization and State Feedback
584(5)
15.5 State Feedback and Disturbance Rejection
589(4)
15.6 Similarity Transformations
593(5)
15.7 Pole Placement
598(5)
15.8 Asymptotic Tracking of Equilibrium Points
603(2)
15.9 Tracking Step Inputs via State Feedback
605(7)
15.10 Inverted Pendulum on an Inclined Track*
612(6)
15.11 Feedback Linearization Control*
618(25)
Appendix: Disturbance Rejection in the Statespace
623(3)
Problems
626(17)
16 State Estimators and Parameter Identification
643(50)
16.1 State Estimators
643(17)
16.2 State Feedback and State Estimation in the Laplace Domain*
660(3)
16.3 Multi-Output Observer Design for the Inverted Pendulum*
663(2)
16.4 Properties of Matrix Transpose and Inverse
665(3)
16.5 Duality*
668(1)
16.6 Parameter Identification
669(24)
Problems
677(16)
17 Robustness and Sensitivity of Feedback
693(34)
17.1 Inverted Pendulum with Output x
694(14)
17.2 Inverted Pendulum with Output y(t) = x(t) + (l + J/ml)θ(t)
708(3)
17.3 Inverted Pendulum with State Feedback
711(4)
17.4 Inverted Pendulum with an Integrator and State Feedback
715(2)
17.5 Inverted Pendulum with State Feedback via State Estimation
717(10)
Problems
720(7)
*Sections marked with an asterisk may be skipped without loss of continuity
References 727(4)
Index 731
John Chiasson, PhD, is a Fellow of the IEEE and the author of Modeling and High-Performance Control of Electric Machines (Wiley 2005), Introduction to Probability and Stochastic Processes (Wiley 2013), and Differential-Geometric Approach to Nonlinear Control (2021).