Preface |
|
ix | |
About the Companion Website |
|
xiv | |
|
|
1 | (16) |
|
|
1 | (6) |
|
|
7 | (5) |
|
|
12 | (1) |
|
|
13 | (2) |
|
1.5 General Control Problem |
|
|
15 | (2) |
|
|
17 | (32) |
|
2.1 Laplace Transform Properties |
|
|
20 | (4) |
|
2.2 Partial Fraction Expansion |
|
|
24 | (11) |
|
|
35 | (1) |
|
2.4 Poles and Partial Fractions |
|
|
36 | (13) |
|
Appendix: Exponential Function |
|
|
39 | (4) |
|
|
43 | (6) |
|
3 Differential Equations and Stability |
|
|
49 | (40) |
|
3.1 Differential Equations |
|
|
49 | (3) |
|
3.2 Phasor Method of Solution |
|
|
52 | (5) |
|
|
57 | (5) |
|
3.4 Stable Transfer Functions |
|
|
62 | (3) |
|
3.5 Routh-Hurwitz Stability Test |
|
|
65 | (24) |
|
|
77 | (12) |
|
4 Mass-Spring-Damper Systems |
|
|
89 | (22) |
|
|
89 | (1) |
|
4.2 Modeling Mass-Spring-Damper Systems |
|
|
90 | (6) |
|
|
96 | (15) |
|
|
100 | (11) |
|
5 Rigid Body Rotational Dynamics |
|
|
111 | (38) |
|
|
111 | (1) |
|
5.2 Newton's Law of Rotational Motion |
|
|
112 | (8) |
|
|
120 | (7) |
|
|
127 | (22) |
|
|
135 | (14) |
|
6 The Physics of the DC Motor |
|
|
149 | (36) |
|
|
149 | (2) |
|
|
151 | (4) |
|
|
155 | (8) |
|
6.4 Dynamic Equations of the DC Motor |
|
|
163 | (2) |
|
6.5 Optical Encoder Model |
|
|
165 | (3) |
|
6.6 Tachometer for a DC Machine* |
|
|
168 | (2) |
|
6.7 The Multiloop DC Motor* |
|
|
170 | (15) |
|
|
175 | (10) |
|
|
185 | (18) |
|
7.1 Block Diagram for a DC Motor |
|
|
185 | (2) |
|
7.2 Block Diagram Reduction |
|
|
187 | (16) |
|
|
197 | (6) |
|
|
203 | (30) |
|
8.1 First-Order System Response |
|
|
203 | (2) |
|
8.2 Second-Order System Response |
|
|
205 | (12) |
|
8.3 Second-Order Systems with Zeros |
|
|
217 | (5) |
|
|
222 | (11) |
|
Appendix: Root Locus Matlab File |
|
|
224 | (1) |
|
|
224 | (9) |
|
9 Tracking and Disturbance Rejection |
|
|
233 | (52) |
|
|
233 | (6) |
|
9.2 Control of a DC Servo Motor |
|
|
239 | (13) |
|
9.3 Theory of Tracking and Disturbance Rejection |
|
|
252 | (4) |
|
9.4 Internal Model Principle |
|
|
256 | (2) |
|
9.5 Design Example: PI-D Control of Aircraft Pitch |
|
|
258 | (7) |
|
9.6 Model Uncertainty and Feedback* |
|
|
265 | (20) |
|
|
273 | (12) |
|
10 Pole Placement, 2 DOF Controllers, and Internal Stability |
|
|
285 | (76) |
|
10.1 Output Pole Placement |
|
|
285 | (13) |
|
10.2 Two Degrees of Freedom Controllers |
|
|
298 | (10) |
|
|
308 | (8) |
|
10.4 Design Example: 2 DOF Control of Aircraft Pitch |
|
|
316 | (5) |
|
10.5 Design Example: Satellite with Solar Panels (Collocated Case) |
|
|
321 | (40) |
|
Appendix: Output Pole Placement |
|
|
324 | (4) |
|
Appendix: Multinomial Expansions |
|
|
328 | (1) |
|
|
329 | (6) |
|
Appendix: Unstable Pole-Zero Cancellation |
|
|
335 | (1) |
|
|
336 | (3) |
|
|
339 | (22) |
|
11 Frequency Response Methods |
|
|
361 | (86) |
|
|
361 | (22) |
|
|
383 | (19) |
|
11.3 Relative Stability: Gain and Phase Margins |
|
|
402 | (7) |
|
11.4 Closed-Loop Bandwidth |
|
|
409 | (5) |
|
11.5 Lead and Lag Compensation |
|
|
414 | (5) |
|
11.6 Double Integrator Control via Lead-Lag Compensation |
|
|
419 | (7) |
|
11.7 Inverted Pendulum with Output Y(s) = X(s) + (l + J/ml)θ(s) |
|
|
426 | (21) |
|
Appendix: Bode and Nyquist Plots in Matlab |
|
|
427 | (1) |
|
|
428 | (19) |
|
|
447 | (50) |
|
12.1 Angle Condition and Root Locus Rules |
|
|
449 | (8) |
|
12.2 Asymptotes and Their Real Axis Intersection |
|
|
457 | (6) |
|
|
463 | (18) |
|
12.4 Effect of Open-Loop Poles on the Root Locus |
|
|
481 | (1) |
|
12.5 Effect of Open-Loop Zeros on the Root Locus |
|
|
482 | (1) |
|
12.6 Breakaway Points and the Root Locus |
|
|
483 | (1) |
|
12.7 Design Example: Satellite with Solar Panels (Noncollocated) |
|
|
484 | (13) |
|
|
488 | (9) |
|
13 Inverted Pendulum, Magnetic Levitation, and Cart on a Track |
|
|
497 | (40) |
|
|
497 | (9) |
|
13.2 Linearization of Nonlinear Models |
|
|
506 | (4) |
|
|
510 | (6) |
|
13.4 Cart on a Track System |
|
|
516 | (21) |
|
|
521 | (16) |
|
|
537 | (32) |
|
|
537 | (2) |
|
14.2 Transfer Function to Statespace |
|
|
539 | (12) |
|
14.3 Laplace Transform of the Statespace Equations |
|
|
551 | (3) |
|
14.4 Fundamental Matrix Φ |
|
|
554 | (4) |
|
14.5 Solution of the Statespace Equation* |
|
|
558 | (3) |
|
14.6 Discretization of a Statespace Model* |
|
|
561 | (8) |
|
|
563 | (6) |
|
|
569 | (74) |
|
|
569 | (9) |
|
15.2 General State Feedback Trajectory Tracking |
|
|
578 | (1) |
|
15.3 Matrix Inverses and the Cay ley-Hamilton Theorem |
|
|
579 | (5) |
|
15.4 Stabilization and State Feedback |
|
|
584 | (5) |
|
15.5 State Feedback and Disturbance Rejection |
|
|
589 | (4) |
|
15.6 Similarity Transformations |
|
|
593 | (5) |
|
|
598 | (5) |
|
15.8 Asymptotic Tracking of Equilibrium Points |
|
|
603 | (2) |
|
15.9 Tracking Step Inputs via State Feedback |
|
|
605 | (7) |
|
15.10 Inverted Pendulum on an Inclined Track* |
|
|
612 | (6) |
|
15.11 Feedback Linearization Control* |
|
|
618 | (25) |
|
Appendix: Disturbance Rejection in the Statespace |
|
|
623 | (3) |
|
|
626 | (17) |
|
16 State Estimators and Parameter Identification |
|
|
643 | (50) |
|
|
643 | (17) |
|
16.2 State Feedback and State Estimation in the Laplace Domain* |
|
|
660 | (3) |
|
16.3 Multi-Output Observer Design for the Inverted Pendulum* |
|
|
663 | (2) |
|
16.4 Properties of Matrix Transpose and Inverse |
|
|
665 | (3) |
|
|
668 | (1) |
|
16.6 Parameter Identification |
|
|
669 | (24) |
|
|
677 | (16) |
|
17 Robustness and Sensitivity of Feedback |
|
|
693 | (34) |
|
17.1 Inverted Pendulum with Output x |
|
|
694 | (14) |
|
17.2 Inverted Pendulum with Output y(t) = x(t) + (l + J/ml)θ(t) |
|
|
708 | (3) |
|
17.3 Inverted Pendulum with State Feedback |
|
|
711 | (4) |
|
17.4 Inverted Pendulum with an Integrator and State Feedback |
|
|
715 | (2) |
|
17.5 Inverted Pendulum with State Feedback via State Estimation |
|
|
717 | (10) |
|
|
720 | (7) |
|
*Sections marked with an asterisk may be skipped without loss of continuity |
|
|
References |
|
727 | (4) |
Index |
|
731 | |