Muutke küpsiste eelistusi

E-raamat: Introduction to Wireless Communication Circuits

  • Formaat: 468 pages
  • Ilmumisaeg: 01-Sep-2022
  • Kirjastus: River Publishers
  • Keel: eng
  • ISBN-13: 9781000795837
  • Formaat - PDF+DRM
  • Hind: 112,32 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 468 pages
  • Ilmumisaeg: 01-Sep-2022
  • Kirjastus: River Publishers
  • Keel: eng
  • ISBN-13: 9781000795837

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book is focused on special circuits dedicated to the RF level of wireless communications. From oscillators to modulation and demodulation and from mixers to RF and power amplifier circuits, the topics are presented in a sequential manner. A wealth of analysis is provided in the text alongside various worked out examples.

Over the past decade the tremendous development of wireless communications has changed human life incredibly. Considerable advancement has been made in the design and architecture of communications related RF and microwave circuits. This book is focused on special circuits dedicated to the RF level of wireless communications. From oscillators to modulation and demodulation and from mixers to RF and power amplifier circuits, the topics are presented in a sequential manner. A wealth of analysis is provided in the text alongside various worked out examples. Related problem sets are given at the end of each chapter. Basic concepts of RF analog circuit design are developedin the book.Technical topics discussed in the book include:
  • wireless communication systems
  • RF oscillators and phase locked loops
  • modulator and demodulator circuits
  • RF mixers
  • automatic gain control and limiters
  • microwave circuits, transmission lines and S-parameters
  • matching networks
  • linear amplifier design and power amplifiers
  • linearization techniques
Foreword v
Preface to the Second Edition vii
Preface to the First Edition ix
List of Figures xix
List of Tables xxxvii
List of Abbreviations xxxix
Part 1
1 The Amazing World of Wireless Systems
1.1 Introduction to Communication Circuits
3(5)
1.2 Signal Levels and Rayleigh Fading
8(1)
1.3 Calculation of the Sensitivity in Different Standards
9(1)
1.4 Considerations in RF System Design
10(7)
1.5 A Basic Understanding of Frequency Synthesizers
17(4)
1.6 Conclusion
21(1)
1.7 References and Further Reading
21(1)
1.8 Problems
21(6)
2 Oscillators
27(100)
2.1 An Introduction to Oscillators
27(1)
2.2 First Approach: Positive Feedback
27(5)
2.3 Second Approach: Negative Resistance/Conductance
32(2)
2.4 Oscillator Topologies
34(7)
2.4.1 Common-Emitter Oscillator Circuit
36(1)
2.4.2 Common-Base Oscillator Circuit
37(1)
2.4.3 Common-Collector Oscillator Circuit
37(1)
2.4.4 Colpitts versus Hartley Oscillators, a New Insight
38(3)
2.5 Crystal Oscillators
41(5)
2.5.1 Datasheet of a Family of Crystals
45(1)
2.6 Calculation of the Oscillation Frequency Including the Device Parasitics
46(1)
2.7 Quality Factor of Reactive Elements
47(2)
2.8 Nonlinear Behavior in Amplifiers
49(3)
2.9 A Note on the Modified Besse! Functions of the First Kind
52(1)
2.10 Large-Signal Transconductance and Harmonic Tuned Amplifiers
53(10)
2.10.1 Case I: Resonant circuit is tuned to the first harmonic of the input frequency (tuned amplifier case)
58(1)
2.10.2 Case II: Resonant circuit is tuned to the second harmonic of the input frequency (frequency multiplier case)
58(5)
2.11 Differential Bipolar Stage Large-Signal Transconductance
63(2)
2.12 Inductive and Capacitive Dividers (Impedance Transformers)
65(9)
2.12.1 Tapped Capacitive/Inductive Impedance Transformers
66(8)
2.13 Analysis of Large-signal Loop Gain of an Oscillator
74(8)
2.13.1 Increasing the Quality Factor and the Frequency Stability with a Crystal
77(4)
2.13.2 Oscillator Harmonics Calculation
81(1)
2.14 Colpitts Oscillator with Emitter Degeneration
82(1)
2.15 MOS Stage Large-Signal Transconductance
83(3)
2.16 Differential MOS Stage Large-Signal Transconductance
86(3)
2.17 An Oscillator With a Hypothetical Model
89(1)
2.18 A MOS Oscillator with Differential Gain Stage
90(1)
2.19 Voltage-Controlled Oscillators
91(11)
2.19.1 Different Types of Varactors and their Bias
91(11)
2.20 Special Topic: Nonlinear, Device Fed by Sinusoidal Large-Signal
102(6)
2.21 Datasheet of a Voltage-Controlled Oscillator
108(3)
2.22 Conclusion
111(1)
2.23 References and Further Reading
111(2)
2.24 Problems
113(14)
Part 2
3 PLL, FM Modulation, and FM Demodulation
127(42)
3.1 Frequency Modulation
127(3)
3.2 Frequency Demodulation
130(11)
3.2.1 Phase Detector
130(1)
3.2.2 Gilbert Cell as a Phase Detector
131(3)
3.2.3 Quadrature Phase (FM) Detector
134(7)
3.3 Basics of PLLs and their Application as an FM Demodulator
141(11)
3.3.1 The Transfer Function of the First-Order PLL
144(8)
3.4 Further PLL Applications
152(9)
3.4.1 FM with PLL
156(2)
3.4.2 PLL Application in Frequency Synthesizers and Its Transfer function
158(3)
3.5 Advanced Topic: PLL Type II
161(3)
3.6 Conclusion
164(1)
3.7 References and Further Reading
165(1)
3.8 Problems
166(3)
4 Mixers
169(54)
4.1 Mixer Concept
169(3)
4.1.1 The Conceptual Behavior of Single-Diode Mixers
169(1)
4.1.2 A Nonlinear Circuit as a Mixer
170(2)
4.2 Third Order Intermodulation Concept in a Nonlinear Amplifier
172(2)
4.2.1 Characteristic of Third-Order IM and Measurement Method
173(1)
4.3 Basic Concept of Third-Order IM in a Basic Mixer
174(6)
4.3.1 The Desired Channel Blocking with the Third-Order IM Component
176(1)
4.3.2 Special Content: IM with Any Nonlinear Circuit as a Mixer
177(3)
4.4 Bipolar Transistor Active Mixer
180(4)
4.5 Mixer types Based on Switching Circuits
184(10)
4.5.1 Conversion Gain and Local Oscillator Leakage
185(9)
4.6 Matching in Mixers
194(1)
4.7 Calculating IIP3 in Nonlinear Amplifier/Mixer
194(9)
4.7.1 Compression Point and IIP3 in a Nonlinear Transconductance Mixer
197(3)
4.7.2 IIP3 of Differential Pair Amplifiers
200(3)
4.8 Linearization Methods in Mixers
203(6)
4.9 Calculating Third-Order Input Intercept Point in Cascaded Stages
209(3)
4.9.1 Third-Order Input Intercept Voltage of Cascaded stages in Terms of Single-Stage Intercept Voltage
209(1)
4.9.2 Combination of Amplifier and Mixer
210(2)
4.10 Important Point in RF Circuit Simulation
212(1)
4.11 Conclusion
213(1)
4.12 References and Further Reading
213(1)
4.13 Problems
214(9)
5 Modulation/Demodulation of Amplitude/Phase
223(34)
5.1 AM Modulation
223(1)
5.2 AM Demodulation
224(2)
5.3 Generating AM Signals
226(3)
5.4 Double-Sideband and Single-Sideband Suppressed Carrier Generation
229(2)
5.5 Synchronous AM Detection
231(3)
5.5.1 A Synchronous AM Detection (with carrier extraction)
233(1)
5.6 Gilbert Cell Applications
234(1)
5.7 Modern Practical Modulations
235(5)
5.7.1 Binary Phase Shift Keying
235(1)
5.7.2 Quadrature Phase Shift Keying
235(1)
5.7.3 Quadrature Amplitude Modulation (16 - QAM)
236(1)
5.7.4 Quadrature Amplitude Modulation (6 - QAM)
237(1)
5.7.5 Generating Binary Phase Shift Keying Signal
238(1)
5.7.6 Generating and Detecting the Quadrature Phase Shift Keying Signal
239(1)
5.8 Effect of Phase and Amplitude Mismatch on the Signal Constellation
240(9)
5.8.1 Improvement of bandwidth efficiency
243(6)
5.9 Conclusion
249(1)
5.10 References and Further Reading
249(2)
5.11 Problems
251(6)
6 Limiters and Automatic Gain Control
257(26)
6.1 Limiting Versus Automatic Gain Control
257(2)
6.1.1 Limiting Circuits
257(1)
6.1.2 AGC Amplifiers
258(1)
6.2 Total Bandwidth with Multistage
259(2)
6.3 Offset Compensation Circuits
261(4)
6.3.1 Lower Cut-off Frequency of the Amplifier with Offset Compensation Loop
263(2)
6.4 Automatic Gain Control
265(3)
6.4.1 Gain Control Methods
265(3)
6.5 Amplitude Detectors
268(2)
6.5.1 Logarithmic Signal Level Indicator
269(1)
6.6 Amplifier Circuit with Gain Control Based on Analog Multipliers
270(3)
6.7 Increasing Bandwidth Methods
273(4)
6.7.1 Employing High-Speed Transistors
273(1)
6.7.2 Increasing Unity Current Gain Frequency
274(1)
6.7.3 Inductive Load (Shunt Peaking)
274(2)
6.7.4 Decreasing Input Capacitance by Series Feedback
276(1)
6.8 Oscillation in Limiting Stages
277(1)
6.9 Conclusion
278(1)
6.10 References and Further Reading
279(4)
Part 3
7 Transmission Lines and Impedance Matching
283(66)
7.1 An Introduction to Radio-Frequency Amplifiers in Receivers
283(3)
7.1.1 Transmission Line
284(2)
7.2 Wave propagation Equations in Transmission Line for R = 0 and G = 0
286(5)
7.2.1 General Wave Propagation Relations in Iossy Transmission Lines
289(2)
7.3 Characteristic Impedance of a Line
291(2)
7.3.1 Lossless Transmission Line
292(1)
7.4 Terminated Transmission Lines
293(5)
7.5 Special Cases of a Terminated Line
298(3)
7.5.1 Termination to the Line Characteristic Impedance
298(1)
7.5.2 Short-circuit load impedance
299(1)
7.5.3 Open-circuit load
300(1)
7.6 Source and Load Mismatch in Lossless Lines (A Reflection Coefficient Perspective)
301(3)
7.7 Impedance Transformer Based on λ/4 line (Impedance Inverter)
304(1)
7.7.1 Synthesis of an Inductor and a Capacitor with a Transmission Line
305(1)
7.8 Voltage Standing Wave Ratio
305(1)
7.9 Impedance Matching: The L-Section Approach
306(16)
7.9.1 A New Definition of the Quality Factor
311(11)
7.10 Smith Chart Mapping
322(17)
7.10.1 Some simple application rules while using the Smith chart
327(12)
7.11 Conclusion
339(1)
7.12 References and Further Reading
340(1)
7.13 Problems
341(8)
8 Scattering Parameters
8.1 Representation of Two-Port Networks
349(8)
8.1.1 Common Circuit Parameters of Two-Port Networks
349(2)
8.1.2 Scattering Parameters
351(6)
8.2 Measuring S-Parameters Using a Network Analyzer
357(12)
8.2.1 Operation of a Network Analyzer
357(1)
8.2.2 Calibration Using Electrical Delay
358(1)
8.2.3 Quiescent Point bias Circuit
358(1)
8.2.4 One-Port and Two-Port Calibration for Short Circuit, Open Circuit, and the Characteristic Impedance
359(10)
8.3 Conversion of Network Matrices
369(1)
8.4 Conclusion
370(1)
8.5 References and Further Reading
371(1)
8.6 Problems
372(5)
9 Amplifier Design Using S-parameters
9.1 Amplifier Design Using Scattering Parameters
377(1)
9.2 Specification of Amplifiers
377(3)
9.3 Performance Parameters of an Amplifier
380(11)
9.3.1 Stability
380(4)
9.3.2 Maximum APG
384(7)
9.4 Power Gain Contours
391(8)
9.4.1 OPG Contours for Bilateral Unconditionally Stable Amplifiers
391(7)
9.4.2 APG Contours for Bilateral Conditionally Stable Amplifiers
398(1)
9.5 Noise Behavior of a Two-Port Network
399(4)
9.5.1 Noise in a Two-Port
399(4)
9.6 Constant Noise Figure Contours
403(3)
9.7 Design of a Single-Stage Low-Noise Amplifier
406(3)
9.8 Design of Two-Stage Amplifiers
409(5)
9.9 Conclusion
414(1)
9.10 References and Further Reading
414(2)
9.11 Problems
416(9)
10 Power Amplifier
425(44)
10.1 PA Specification
426(14)
10.1.1 PA Efficiency
426(1)
10.1.2 PA Output Power
427(2)
10.1.3 Receive-band Noise
429(1)
10.1.4 PA Gain
430(1)
10.1.5 Linearity Considerations in PA
431(9)
10.1.6 PA Stability Considerations
440(1)
10.2 PA Topologies
440(15)
10.2.1 Class A Power Amplifier
441(2)
10.2.2 Class B Power Amplifier
443(2)
10.2.3 Class AB Power Amplifier
445(1)
10.2.4 Class C Power Amplifier
446(2)
10.2.5 Comparison Between Class A, Class B, Class AB, and Class C Amplifiers
448(1)
10.2.6 Class D Power Amplifier
448(3)
10.2.7 Class E Power Amplifier
451(1)
10.2.8 Class F Power Amplifier
452(2)
10.2.9 Class S Power Amplifier
454(1)
10.2.10 PA's Performance Comparison
455(1)
10.3 Linearization Techniques in Power Amplifiers
455(8)
10.3.1 Back-Off
455(1)
10.3.2 Predistortion
456(2)
10.3.3 Polar Modulation Feedback
458(1)
10.3.4 Cartesian Modulation Feedback
459(1)
10.3.5 Feedforward Method
459(1)
10.3.6 Linear amplification with nonlinear components
460(1)
10.3.7 Envelope Elimination and Restoration
461(1)
10.3.8 Pulse Amplitude and Width Modulation
461(1)
10.3.9 Switching Parallel Amplifiers
462(1)
10.4 Conclusion
463(1)
10.5 References and Further Reading
464(1)
10.6 Problems
465(4)
Index 469(22)
Authors Biographies 491
Forouhar Farzaneh, Ali Fotowat, Mahmoud Kamarei, Ali Nikoofard, Mohammad Elmi