Muutke küpsiste eelistusi

E-raamat: Introductory Concepts for Abstract Mathematics

(Trinity University, San Antonio, Texas, USA)
  • Formaat: 344 pages
  • Ilmumisaeg: 03-Oct-2018
  • Kirjastus: Chapman & Hall/CRC
  • Keel: eng
  • ISBN-13: 9781351990257
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 80,59 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 344 pages
  • Ilmumisaeg: 03-Oct-2018
  • Kirjastus: Chapman & Hall/CRC
  • Keel: eng
  • ISBN-13: 9781351990257
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

As an offshoot of an undergraduate foundations course the author has taught for years at Trinity College, this text aims to bridge the gap between basic calculus studies and abstract algebra and real analysis. Seven sections cover logic and proof, naive set theory, functions and relations, algebraic and order properties of number systems, transfinite cardinal numbers, and axiom of choice and ordinal numbers. Parenthetical comments are interspersed to help students connect concepts. Concludes with a reading list, and hints/ solutions to selected exercises. Annotation c. Book News, Inc., Portland, OR (booknews.com)

Beyond calculus, the world of mathematics grows increasingly abstract and places new and challenging demands on those venturing into that realm. As the focus of calculus instruction has become increasingly computational, it leaves many students ill prepared for more advanced work that requires the ability to understand and construct proofs.

Introductory Concepts for Abstract Mathematics helps readers bridge that gap. It teaches them to work with abstract ideas and develop a facility with definitions, theorems, and proofs. They learn logical principles, and to justify arguments not by what seems right, but by strict adherence to principles of logic and proven mathematical assertions - and they learn to write clearly in the language of mathematics

The author achieves these goals through a methodical treatment of set theory, relations and functions, and number systems, from the natural to the real. He introduces topics not usually addressed at this level, including the remarkable concepts of infinite sets and transfinite cardinal numbers

Introductory Concepts for Abstract Mathematics takes readers into the world beyond calculus and ensures their voyage to that world is successful. It imparts a feeling for the beauty of mathematics and its internal harmony, and inspires an eagerness and increased enthusiasm for moving forward in the study of mathematics.

Arvustused

"... very clearly written. Sophomore-level undergraduates should have no difficulty with the book." -Zentralblatt fur Mathematik

Preface vii
SECTION I LOGIC AND PROOF 1(90)
Logic and Propositional Calculus
3(12)
Tautologies and Validity
15(14)
Quantifiers and Predicates
29(12)
Techniques of Derivation and Rules of Inference
41(12)
Informal Proof and Theorem-Proving Techniques
53(16)
On Theorem Proving and Writing Proofs
69(10)
Mathematical Induction
79(12)
SECTION II SETS 91(42)
Sets and Set Operations
93(14)
Set Union, Intersection, and Complement
107(16)
Generalized Union and Intersection
123(10)
SECTION III FUNCTIONS AND RELATIONS 133(54)
Cartesian Products
135(6)
Relations
141(10)
Partitions
151(10)
Functions
161(12)
Composition of Functions
173(6)
Image and Preimage Functions
179(8)
SECTION IV ALGEBRAIC AND ORDER PROPERTIES OF NUMBER SYSTEMS 187(48)
Binary Operations
189(6)
The Systems of Whole and Natural Numbers
195(6)
The Systems Z of Integers
201(14)
The System Q of Rational Numbers
215(8)
Other Aspects of Order
223(4)
The Real Number System
227(8)
SECTION V TRANSFINITE CARDINAL NUMBERS 235(38)
Finite and Infinite Sets
237(6)
Denumerable and Countable Sets
243(10)
Uncountable Sets
253(6)
Transfinite Cardinal Numbers
259(14)
SECTION VI AXIOM OF CHOICE AND ORDINAL NUMBERS 273(32)
Partially Ordered Sets
275(10)
Least Upper Bound and Greatest Lower Bound
285(4)
Axiom of Choice
289(10)
Well Ordered Sets
299(6)
Reading List 305(2)
Hints and Solutions to Selected Exercises 307(20)
Index 327
Hummel, Kenneth E.