Muutke küpsiste eelistusi

E-raamat: Introductory Electrical Engineering With Math Explained in Accessible Language

  • Formaat: EPUB+DRM
  • Ilmumisaeg: 23-Oct-2019
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119580201
  • Formaat - EPUB+DRM
  • Hind: 101,21 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 23-Oct-2019
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119580201

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Offers an understanding of the theoretical principles in electronic engineering, in clear and understandable terms

Introductory Electrical Engineering With Math Explained in Accessible Language offers a text that explores the basic concepts and principles of electrical engineering. The author—a noted expert on the topic—explains the underlying mathematics involved in electrical engineering through the use of examples that help with an understanding of the theory. The text contains clear explanations of the mathematical theory that is needed to understand every topic presented, which will aid students in engineering courses who may lack the necessary basic math knowledge. 

Designed to breakdown complex math concepts into understandable terms, the book incorporates several math tricks and knowledge such as matrices determinant and multiplication. The author also explains how certain mathematical formulas are derived. In addition, the text includes tables of integrals and other tables to help, for example, find resistors’ and capacitors’ values. The author provides the accessible language, examples, and images that make the topic accessible and understandable. This important book: 

•    Contains discussion of concepts that go from the basic to the complex, always using simplified language

•    Provides examples, diagrams, and illustrations that work to enhance explanations

•    Explains the mathematical knowledge that is crucial to understanding electrical concepts

•    Contains both solved exercises in-line with the explanations

Written for students, electronic hobbyists and technicians, Introductory Electrical Engineering With Math Explained in Accessible Language is a much-needed text that is filled with the basics concepts of electrical engineering with the approachable math that aids in an understanding of the topic.

About the Author xix
Preface xxi
Acknowledgement xxiii
Introduction xxv
Conventions: Used by this Book xxvii
1 Scientific Method: General Concepts
1(8)
1.1 Introduction
1(1)
1.2 Powers of 10
1(1)
1.3 Roots
2(1)
1.4 Scientific Notation as a Tool
2(7)
1.4.1 Very Large Numbers
2(1)
1.4.2 Very Small Numbers
3(1)
1.4.3 Operations with Powers of 10
3(1)
1.4.3.1 Multiplication
3(1)
1.4.3.2 Division
4(1)
1.4.3.3 Adding and Subtracting
4(1)
1.4.3.4 Raising to a Number
4(1)
1.4.3.5 Expressing Roots as Exponents
5(1)
1.4.3.6 Extracting the Root
5(1)
1.4.4 Computers and Programming
6(1)
1.4.5 Engineering Notation
6(3)
2 Infinitesimal Calculus: A Brief Introduction
9(10)
2.1 Introduction
9(1)
2.2 The Concept Behind Calculus
9(10)
2.2.1 Limits
10(1)
2.2.2 Derivatives
11(4)
2.2.3 Integral
15(4)
3 Atom: Quarks, Protons, and Electrons
19(8)
3.1 Introduction
19(1)
3.2 Atoms and Quarks
19(1)
3.3 Electrons
20(1)
3.4 Strong Force and Weak Force
21(1)
3.5 Conductors and Electricity
22(1)
3.6 The Shells
23(1)
3.7 Electric Potential
24(1)
3.8 Current
25(1)
3.9 Electric Resistance
25(2)
4 Voltage and Current: Direct and Alternating Current and Voltage
27(14)
4.1 Introduction
27(1)
4.2 Terminology
27(1)
4.3 Batteries
27(3)
4.3.1 Battery Life
28(1)
4.3.2 Batteries in Series
29(1)
4.3.3 Batteries in Parallel
29(1)
4.4 Danger Will Robison, Danger!
30(1)
4.4.1 Never Invert Polarities
30(1)
4.4.2 Never Use Different Batteries
30(1)
4.4.3 Short-Circuiting Batteries
30(1)
4.5 Direct Current
31(1)
4.5.1 DC Characteristics
31(1)
4.6 Relative Voltages
31(2)
4.6.1 Mountains
32(1)
4.7 Ground
33(1)
4.8 Alternating Current
34(7)
4.8.1 AC Characteristics
34(1)
4.8.2 AC Cycles
34(1)
4.8.3 Period and Frequency
35(1)
4.8.4 Peak-to-Peak Voltage
36(1)
4.8.5 DC Offset
37(1)
Exercises
38(1)
Solutions
39(2)
5 Resistors: The Most Fundamental Component
41(10)
5.1 Introduction
41(1)
5.2 Resistor
41(1)
5.3 Electric Resistance
41(1)
5.4 Symbols
41(1)
5.5 Types of Resistor
42(1)
5.6 Power
42(1)
5.7 Color Code
42(2)
5.8 Potentiometer
44(1)
5.9 Trimpots
44(1)
5.10 Practical Usage
45(1)
5.11 Electric Characteristics
45(1)
5.11.1 Important Facts
45(1)
5.12 Resistors in Series
45(1)
5.13 Resistors in Parallel
46(1)
5.14 DC and AC Analysis
46(1)
5.15 Input and Output Synchronism
47(4)
Exercises
48(1)
Solutions
48(3)
6 Ohm's Laws: Circuit Analysis
51(12)
6.1 Introduction
51(1)
6.2 Basic Rules of Electricity
51(1)
6.3 First Ohm's Law
52(1)
6.4 Second Ohm's Law
53(1)
6.5 Examples
53(10)
6.5.1 Example 1
53(1)
6.5.1.1 Solution
53(1)
6.5.2 Example 2
53(1)
6.5.2.1 Solution
54(1)
6.5.2.2 Another Method to Obtain the Same Result
55(1)
6.5.3 Example 3
55(1)
6.5.3.1 Solution
56(1)
6.5.4 Example 4
56(1)
6.5.4.1 Solution
56(1)
6.5.4.2 Another Method to Obtain the Same Result
57(1)
6.5.5 Example 5
57(1)
6.5.5.1 Solution
57(1)
Exercises
58(1)
Solutions
59(4)
7 Delta-Wye Conversions: Circuit Analysis
63(10)
7.1 Introduction
63(1)
7.2 Delta Circuit
63(1)
7.3 Delta-Wye Conversion
63(2)
7.4 Wye-Delta Conversion
65(1)
7.5 Examples
65(8)
7.5.1 Example 1
65(1)
7.5.1.1 Solution
65(2)
7.5.2 Example 2
67(1)
7.5.2.1 Solution
67(2)
Exercises
69(1)
Solutions
69(4)
8 Capacitors: And Electric Charges
73(30)
8.1 Introduction
73(1)
8.2 History
73(1)
8.3 How It Works
73(4)
8.3.1 Dielectric
75(1)
8.3.2 Construction Methods
76(1)
8.4 Electric Characteristics
77(1)
8.5 Electric Field
78(1)
8.6 Capacitance
78(1)
8.7 Stored Energy
79(2)
8.8 Voltage and Current
81(3)
8.8.1 Current on a Charging Capacitor
81(1)
8.8.2 Voltage on a Charging Capacitor
82(2)
8.9 Examples
84(3)
8.9.1 Example 1
84(1)
8.9.1.1 Solution
84(1)
8.9.1.2 Before the Pulse
85(1)
8.9.1.3 During the Pulse
85(1)
8.9.1.4 After the Pulse
86(1)
8.9.2 Example 2
86(1)
8.9.2.1 Solution
86(1)
8.10 AC Analysis
87(1)
8.10.1 Pool Effect
87(1)
8.11 Capacitive Reactance
88(1)
8.12 Phase
88(3)
8.12.1 Mathematical Proof
89(2)
8.13 Electrolytic Capacitor
91(2)
8.14 Variable Capacitors
93(1)
8.15 Capacitors in Series
93(1)
8.16 Capacitors in Parallel
94(1)
8.17 Capacitor Color Code
95(1)
8.17.1 The Code
95(1)
8.18 Capacitor Markings
96(7)
Exercises
98(1)
Solutions
98(5)
9 Electromagnetism: And the World Revolution
103(6)
9.1 Introduction
103(1)
9.2 The Theory
103(1)
9.3 Hans Christian 0rsted
103(2)
9.4 The Right-Hand Rule
105(1)
9.5 Faraday First Experiment
105(1)
9.6 Faraday Second Experiment
106(1)
9.7 Conclusion
107(2)
10 Inductors: Temperamental Devices
109(14)
10.1 Introduction
109(1)
10.2 The Inductor
109(1)
10.3 Coils and Magnets
110(1)
10.4 Inductance
111(1)
10.5 Variable Inductor
111(1)
10.6 Series Inductance
112(1)
10.7 Parallel Inductance
112(1)
10.8 DC Analysis
113(3)
10.8.1 Energizing
114(1)
10.8.2 De-energizing
115(1)
10.9 Electromotive Force
116(1)
10.10 Current Across an Inductor
116(1)
10.11 AC Analysis
116(3)
10.11.1 Alternating Voltage and Current
117(2)
10.12 Out of Sync
119(4)
Exercises
120(1)
Solutions
120(3)
11 Transformers: Not the Movie
123(6)
11.1 Introduction
123(1)
11.1.1 Transformers
123(1)
11.2 Connected by the Magnetic Field
124(1)
11.3 Faraday's Law
124(1)
11.4 Primary and Secondary
124(1)
11.5 Real-Life Transformer
125(1)
11.6 Multiple Secondaries
125(1)
11.7 Center Tap
126(1)
11.8 Law of Conservation of Energy
127(1)
11.9 Leakage Flux
127(1)
11.10 Internal Resistance
128(1)
11.11 Direct Current
128(1)
12 Generators: And Motors
129(4)
12.1 Introduction
129(1)
12.2 Electric Generators
129(1)
12.2.1 How It Works
129(2)
12.3 Electric Motor
131(2)
12.3.1 DC Motors
131(1)
12.3.2 AC Motors
132(1)
13 Semiconductors: And Their Junctions
133(10)
13.1 Introduction
133(1)
13.2 It All Started with a Light Bulb
133(2)
13.3 Semiconductors
135(8)
13.3.1 Bipolar Junction
135(1)
13.3.1.1 Making the Structure More Negative
136(1)
13.3.1.2 Making the Structure More Positive
137(1)
13.3.1.3 Pure Magic
137(1)
13.3.1.4 Reverse Biasing
138(1)
13.3.1.5 Forward Biasing
138(1)
13.3.1.6 Biasing Curve
138(1)
13.3.1.7 Thermal Voltage
139(1)
13.3.1.8 Barrier Voltage
140(1)
13.3.1.9 Relation Between Current and Voltage
141(2)
14 Diodes and Transistors: Active Components
143(4)
14.1 Introduction
143(1)
14.2 Diodes
143(1)
14.3 NPN Junction
143(1)
14.4 Biasing
144(1)
14.5 The Transistor, Finally!
144(3)
14.5.1 How Transistors Work?
145(2)
15 Voltage and Current Sources: Circuit Analysis
147(4)
15.1 Introduction
147(1)
15.2 Independent DC Voltage Sources
147(1)
15.3 Independent AC Voltage Sources
147(1)
15.4 Dependent Voltage Sources
148(1)
15.5 Independent Current Sources
149(1)
15.6 Dependent Current Sources
149(2)
16 Source Transformations: Circuit Analysis
151(14)
16.1 Introduction
151(1)
16.2 The Technique
151(2)
16.3 Example
153(12)
16.3.1 Solution
153(7)
Exercises
160(1)
Solutions
161(4)
17 Impedance and Phase: Circuit Analysis
165(16)
17.1 Introduction
165(1)
17.2 This Is Just a Phase
165(1)
17.3 Impedance
166(1)
17.3.1 Series Impedance
166(1)
17.3.2 Parallel Impedances
166(1)
17.4 Capacitive Impedance
167(2)
17.5 Inductive Impedance
169(1)
17.6 Examples
169(4)
17.6.1 Example 1
169(1)
17.6.1.1 Solution
169(2)
17.6.2 Example 2
171(1)
17.6.2.1 Solution
171(2)
17.7 The Importance of Impedances in Real Life
173(8)
17.7.1 Example
173(1)
17.7.1.1 Solution
173(2)
17.7.1.2 What About a Bigger Load?
175(1)
17.7.1.3 Conclusion
176(1)
Exercises
177(1)
Solutions
177(4)
18 Power: And Work
181(16)
18.1 Introduction
181(1)
18.2 Electric Power and Work
181(1)
18.3 Powers in Parallel
182(1)
18.3.1 Conclusion
183(1)
18.4 Powers in Series
183(1)
18.4.1 Conclusion
184(1)
18.5 "Alternating" Power
184(4)
18.5.1 Two Ovens
184(1)
18.5.1.1 The First Oven
185(1)
18.5.1.2 Second Oven
185(1)
18.5.2 The Average Value
185(1)
18.5.2.1 Average Value of a Sinusoidal Function
185(1)
18.5.3 RMS Value
186(1)
18.5.4 Back to the Second Oven
187(1)
18.6 Real, Apparent, and Reactive Power
188(9)
18.6.1 Reactive Power
189(1)
18.6.1.1 Power Factor
190(1)
Exercises
191(1)
Solutions
192(5)
19 Kirchhoff's Laws: Circuit Analysis
197(18)
19.1 Introduction
197(1)
19.2 Kirchhoffs Laws
197(2)
19.2.1 Nodes or Junctions
197(1)
19.2.2 Mesh
198(1)
19.2.3 Kirchhoffs First Law
198(1)
19.2.4 Kirchhoffs Second Law
199(1)
19.3 Examples
199(16)
19.3.1 Example 1
199(1)
19.3.1.1 Solution
200(1)
19.3.1.2 Meshes
200(5)
19.3.2 Example 2
205(1)
19.3.2.1 The Analysis
205(5)
Exercises
210(1)
Solutions
211(4)
20 Nodal Analysis: Circuit Analysis
215(20)
20.1 Introduction
215(1)
20.2 Examples
215(20)
20.2.1 Example 1
215(1)
20.2.1.1 Solution
215(1)
20.2.1.2 Circuit Analysis
216(1)
20.2.1.3 Kirchhoff's Laws
216(3)
20.2.2 Example 2
219(1)
20.2.2.1 Solution
219(1)
20.2.2.2 Applying Kirchhoffs Laws
219(2)
20.2.3 Example 3
221(1)
20.2.3.1 Node A
222(1)
20.2.3.2 Node B
223(3)
Exercises
226(1)
Solutions
227(8)
21 Thevenin's Theorem: Circuit Analysis
235(22)
21.1 Introduction
235(1)
21.2 The Theorem
235(22)
21.2.1 The Equivalent Thevenin Circuit
236(1)
21.2.2 Methodology
236(1)
21.2.3 Example
236(1)
21.2.3.1 Thevenin Equivalent Resistance
237(2)
21.2.3.2 Thevenin Equivalent Voltage
239(1)
21.2.3.3 Node A
240(1)
21.2.3.4 NodeB
241(1)
21.2.3.5 NodeC
242(1)
21.2.3.6 The Thevenin Voltage
243(2)
21.2.3.7 Same Behavior
245(2)
21.2.3.8 NodeC
247(3)
Exercises
250(1)
Solutions
251(6)
22 Norton' Theorem: Circuit Analysis
257(12)
22.1 Introduction
257(1)
22.2 Norton's Theorem
257(12)
22.2.1 Finding Norton Equivalent Circuit
258(1)
22.2.2 Methodology
258(1)
22.2.3 Example
258(1)
22.2.3.1 Finding the Norton Current Source
258(5)
Exercises
263(1)
Solutions
264(5)
23 Superposition Theorem: Circuit Analysis
269(18)
23.1 Introduction
269(1)
23.2 The Theorem
269(1)
23.3 Methodology
269(1)
23.4 Example
270(17)
23.4.1 First Circuit
270(1)
23.4.1.1 Node C
271(1)
23.4.1.2 Relation Between Voltage A and C
271(2)
23.4.1.3 Voltage B
273(1)
23.4.2 Second Circuit
274(1)
23.4.2.1 Node A
274(2)
23.4.2.2 Node C
276(2)
23.4.2.3 Final Result
278(1)
23.4.3 Checking
278(1)
23.4.3.1 Node A
279(1)
23.4.3.2 Node C
279(1)
23.4.3.3 Voltage Across A and B
280(1)
Exercises
281(1)
Solutions
282(5)
24 Millman's Theorem: Circuit Analysis
287(10)
24.1 Introduction
287(1)
24.2 Millman's Theorem
287(4)
24.2.1 The Theory
287(3)
24.2.1.1 Admittance
290(1)
24.3 Examples
291(6)
24.3.1 Example 1
291(1)
24.3.1.1 Solution
291(3)
24.3.2 Example 2
294(1)
Exercises
295(1)
Solutions
295(2)
25 RC Circuits: Voltage and Current Analysis in Circuits Containing Resistors and Capacitors in Series
297(44)
25.1 Introduction
297(1)
25.2 Charging a Capacitor
297(11)
25.2.1 Charging Voltage
298(3)
25.2.2 Charge Equation
301(4)
25.2.3 Charging Current
305(3)
25.3 RC Time Constant
308(7)
25.3.1.1 Transient and Steady States
308(1)
25.3.2 General Formula
309(1)
25.3.3 Discharging a Capacitor
310(1)
25.3.3.1 Charge During Discharge
311(3)
25.3.3.2 Voltage During Discharge
314(1)
25.3.4 Current During Discharge
314(1)
25.4 Examples
315(26)
25.4.1 Example 1
315(1)
25.4.1.1 Current Flowing as the Switch Is Turned On
316(1)
25.4.1.2 Current and Voltage After 1s
316(1)
25.4.2 Example 2
317(1)
25.4.2.1 Current Before the Switch Is Moved
318(1)
25.4.2.2 Current as the Switch Is Moved
318(1)
25.4.2.3 Voltage After 2s
318(1)
25.4.2.4 Current After 2s
319(1)
25.4.3 Example 3
320(1)
25.4.3.1 After the Switch Is Closed
320(2)
25.4.4 Example 4
322(1)
25.4.4.1 Circuit's Impedance
323(2)
25.4.4.2 RMS Current
325(1)
25.4.4.3 Power Factor and Phase Angle
325(1)
25.4.4.4 The Apparent, the Real, and the Reactive Power
326(2)
Exercises
328(2)
Solutions
330(11)
26 RL Circuits: Voltage and Current Analysis in Circuits Containing Resistors and Inductors in Series
341(36)
26.1 Introduction
341(1)
26.2 Energizing
341(8)
26.2.1 Current During Energizing
342(4)
26.2.2 Voltage During Energizing
346(3)
26.3 De-energizing
349(5)
26.3.1 Current During De-energizing
349(3)
26.3.2 Voltage During De-energizing
352(1)
26.3.2.1 RL Time Constant
353(1)
26.3.2.2 Transient and Steady States
353(1)
26.4 Examples
354(23)
26.4.1 Example 1
354(1)
26.4.1.1 Current After 10ms
355(1)
26.4.1.2 Final Current
355(1)
26.4.2 Example 2
355(1)
26.4.2.1 Current Before the Switch Is Moved
356(1)
26.4.2.2 Current as the Switch Is Moved
356(1)
26.4.2.3 Voltage After 5ms
357(1)
26.4.2.4 Current After 5ms
357(1)
26.4.3 Example 3
358(1)
26.4.3.1 The Circuit's Impedance
358(1)
26.4.3.2 RMS Current
359(1)
26.4.3.3 Power Factor
360(1)
26.4.3.4 The Apparent, the Real, and the Reactive Power
361(1)
Exercises
362(3)
Solutions
365(12)
27 RLC Circuits: Part 1: Voltage Analysis in Circuits Containing Resistors, Capacitors, and Inductors in Series
377(50)
27.1 Introduction
377(1)
27.2 A Basic RLC Series Circuit
377(31)
27.2.1 Circuit Analysis
380(1)
27.2.2 Voltage Across the Capacitor
381(2)
27.2.3 Back to the Equation
383(1)
27.2.3.1 Steady-State Solution
383(1)
27.2.4 Transient Solution
384(2)
27.2.4.1 The Roots of the Equation
386(2)
27.2.4.2 Critically Damped Solution
388(9)
27.2.4.3 Overdamped Solution
397(4)
27.2.4.4 Underdamped Solution
401(7)
27.3 Examples
408(19)
27.3.1 Example 1
408(1)
27.3.1.1 What Is the Voltage Across the Capacitor After the Switch Is Closed?
409(1)
27.3.1.2 What Is the Voltage Across the Capacitor Two Seconds After the Switch Is Closed?
409(3)
27.3.1.3 What Is the Circuit's Natural Resonance Frequency?
412(1)
27.3.2 Example 2
412(1)
27.3.2.1 The Complete Equation for the Voltage Across the Capacitor
413(5)
Exercises
418(1)
Solutions
419(8)
28 RLC Circuits: Part 2: Current Analysis in Circuits Containing Resistors, Capacitors, and Inductors in Series
427(24)
28.1 Introduction
427(1)
28.2 The Circuit
427(3)
28.2.1 Current
428(2)
28.3 Current Equations
430(2)
28.3.1 Critically Damped Solution
430(1)
28.3.1.1 Current Curve
430(1)
28.3.2 Overdamped Solution
431(1)
28.3.2.1 Current Curve
431(1)
28.3.3 Underdamped Solution
431(1)
28.3.3.1 Current Curve
432(1)
28.4 Examples
432(19)
28.4.1 Example 1
432(1)
28.4.1.1 What Is the Current Across the Circuit After the Switch Is Closed?
433(1)
28.4.1.2 What Is the Current Across the Circuit Two Seconds After the Switch Is Closed?
433(4)
28.4.2 Example 2
437(1)
28.4.2.1 Solution
438(4)
Exercises
442(1)
Solutions
443(8)
29 Transistor Amplifiers: The Magic Component
451(34)
29.1 Introduction
451(1)
29.2 Transistor as Amplifiers
451(1)
29.3 The Water Storage Tank
451(1)
29 A Current Gain
452(1)
29.5 Power Supply Rails
452(1)
29.6 Amplifying
452(1)
29.7 Quiescent Operating Point
453(1)
29.8 Amplifier Classes
454(31)
29.8.1 Class A
454(1)
29.8.1.1 Common Emitter
455(22)
Exercises
477(2)
Solutions
479(6)
30 Operational Amplifiers: A Brief Introduction
485(24)
30.1 Introduction
485(1)
30.2 Operational Amplifiers
485(1)
30.3 How Op-Amp Works
486(2)
30.4 Op-Amp Characteristics
488(1)
30.5 Typical Configurations
488(21)
30.5.1 Inverting Op-Amp
488(3)
30.5.2 Non-inverting Op-Amp
491(2)
30.5.3 Voltage Follower
493(4)
30.5.4 Non-inverting Summing Amplifier
497(3)
30.5.4.1 Summing Two Inputs
500(1)
30.5.4.2 Summing Three Inputs
501(1)
30.5.5 Inverting Summing Amplifier
502(3)
30.5.6 Integrator
505(2)
30.5.7 Differentiator
507(2)
31 Instrumentation and Bench: A Brief Introduction
509(12)
31.1 Introduction
509(1)
31.2 Multimeter
509(1)
31.2.1 True RMS Multimeter
510(1)
31.3 Voltmeter
510(1)
31.4 Ammeter
511(1)
31.5 Ohmmeter
512(1)
31.6 Oscilloscope
513(1)
31.7 Breadboards
513(2)
31.8 Wire Diameter
515(1)
31.8.1 Types of Wires
516(1)
31.9 Power Supply
516(1)
31.10 Soldering Station
517(1)
31.11 Soldering Fume Extractors
517(1)
31.12 Lead-Free Solder
517(1)
31.13 A Few Images of Real Products
518(3)
Appendix A International System of Units (SI) 521(2)
Appendix B Color Code: Resistors 523(2)
Appendix C Root Mean Square (RMS) Value 525(4)
Appendix D Complex Numbers 529(8)
Appendix E Table of Integrals 537(2)
Appendix F AWG Versus Metric System: Wire Cross Sections 539(2)
Appendix G Resistors: Commercial Values 541(2)
Appendix H Capacitors: Commercial Values 543(6)
Appendix I Inductors: Commercial Values 549(8)
Appendix J Simulation Tools 557(2)
Appendix K Glossary 559(4)
Index 563
MAGNO URBANO has worked in various fields including computer graphics, visual effects and programming for two of the largest broadcast companies in two continents: Globo TV Network in Brazil and RTP (Radio and Television of Portugal). Magno has developed and published about 120 applications for iPhone, iPad, macOS, and Apple TV, some of them hitting #1 or placing in the top 10 in multiple countries for several weeks. He has published 14 books in Europe, 2 in the United States, and over 50 courses on several themes.