Muutke küpsiste eelistusi

E-raamat: Introductory Handbook of Bayesian Thinking

(Analyst, Research & Development, Atlanta Braves Baseball Club)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 17-Apr-2024
  • Kirjastus: Academic Press Inc
  • Keel: eng
  • ISBN-13: 9780443291111
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 77,74 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 17-Apr-2024
  • Kirjastus: Academic Press Inc
  • Keel: eng
  • ISBN-13: 9780443291111
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

An Introductory Handbook of Bayesian Thinking brings Bayesian thinking and methods to a wide audience beyond the mathematical sciences. Appropriate for students with some background in calculus and introductory statistics, particularly for nonstatisticians with a sufficient mathematical background, the text provides a gentle introduction to Bayesian ideas with a wide array of supporting examples from a variety of fields.
1. Probability and Random Variables
2. Probability Distributions, Expected Value, and Variance
3. Common Probability Distributions
4. Conditional Probability and Bayes' Rule
5. Finding and Using Distributions of Data
6. Marginal and Conditional Distributions
7. The Bayesian Switch
8. A Brief Review of R
9. Single Parameter Bayesian Inference
10. Multi-Parameter Inference
11. Gibbs Sampling in R
12. Bayesian Linear Regression
13. Bayesian Binary Regression
14. Probabilistic Clustering
15. Dealing with Non-conjugate Priors
16. Models for Count Data
17. Testing Hypotheses with Bayes
18. Bayesian Inference Beyond This Book

Appendix A: Matrix Form of Bayesian Linear Regression
Appendix B: Multivariate Clustering
Appendix C: List of Probability Distributions
Appendix D: Solutions to Practice Problems
Dr. Stephen Loftus is an Analyst in Research & Development for the Atlanta Braves. Prior to this, he held academic positions at Randolph-Macon College and Sweet Briar College. In his experience in academia and industry, Dr. Loftus has spent a great deal of time studying and developing Bayesian models for a variety of projects. These highly collaborative projects range from analysis in baseball to studies in numerical ecology. In developing these models, he found himself, on many occasions, needing to explain not only the decisions made in making these models, but also the rationale behind the Bayesian philosophy of statistics to individuals with diverse mathematical backgrounds.