Muutke küpsiste eelistusi

E-raamat: Intuitionistic Fuzzy Aggregation and Clustering

  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

An inclusive primer on intuitionistic fuzzy clustering algorithms, this volume covers priority theory and methods of intuitionistic preference relations. It also shows how fuzzy algorithms can be applied to practicalities such as supply-chain management.

This book offers a systematic introduction to the clustering algorithms for intuitionistic fuzzy values, the latest research results in intuitionistic fuzzy aggregation techniques, the extended results in interval-valued intuitionistic fuzzy environments, and their applications in multi-attribute decision making, such as supply chain management, military system performance evaluation, project management, venture capital, information system selection, building materials classification, and operational plan assessment, etc.
1 Intuitionistic Fuzzy Aggregation Techniques
1(158)
1.1 Rankings of Intuitionistic Fuzzy Values
2(15)
1.1.1 Intuitionistic Fuzzy Values
2(1)
1.1.2 Methods for Ranking IFVs
2(10)
1.1.3 The Application of Ranking IFVs Using the Similarity Measure and the Accuracy Degree in Multi-Attribute Decision Making
12(5)
1.2 Intuitionistic Fuzzy Power Aggregation Operators
17(16)
1.2.1 Power Aggregation Operators
17(1)
1.2.2 Some Operational Laws of IFVs
18(2)
1.2.3 Power Aggregation Operators for IFVs
20(5)
1.2.4 Approaches to Multi-Attribute Group Decision Making with Intuitionistic Fuzzy Information
25(4)
1.2.5 Practical Example
29(4)
1.3 Interval-Valued Intuitionistic Fuzzy Power Aggregation Operators
33(14)
1.3.1 Interval-Valued Intuitionistic Fuzzy Values
33(3)
1.3.2 Power Aggregation Operators for IVIFVs
36(5)
1.3.3 Approaches to Multi-Attribute Group Decision Making with Interval-Valued Intuitionistic Fuzzy Information
41(6)
1.4 Intuitionistic Fuzzy Geometric Bonferroni Means
47(18)
1.4.1 Geometric Bonferroni Mean
47(1)
1.4.2 Intuitionistic Fuzzy Geometric Bonferroni Mean
48(8)
1.4.3 The Weighted Intuitionistic Fuzzy Geometric Bonferroni Mean and Its Application in Multi-Attribute Decision Making
56(9)
1.5 Generalized Intuitionistic Fuzzy Bonferroni Means
65(15)
1.5.1 Generalized Bonferroni Means
65(2)
1.5.2 Generalized Intuitionistic Fuzzy Weighted Bonferroni Mean
67(7)
1.5.3 Generalized Intuitionistic Fuzzy Weighted Bonferroni Geometric Mean
74(6)
1.6 Intuitionistic Fuzzy Aggregation Operators Based on Archimedean t-conorm and t-norm
80(19)
1.6.1 Intuitionistic Fuzzy Operational Laws Based on t-conorm and t-norm
80(6)
1.6.2 Intuitionistic Fuzzy Aggregation Operators Based on Archimedean t-conorm and t-norm
86(8)
1.6.3 An Approach to Intuitionistic Fuzzy Multi-Attribute Decision Making
94(5)
1.7 Generalized Intuitionistic Fuzzy Aggregation Operators Based on Hamacher t-conorm and t-norm
99(24)
1.8 Point Operators for Aggregating IFVs
123(7)
1.9 Generalized Point Operators for Aggregating IFVs
130(29)
2 Intuitionistic Fuzzy Clustering Algorithms
159(110)
2.1 Clustering Algorithms Based on Intuitionistic Fuzzy Similarity Matrices
160(17)
2.2 Clustering Algorithms Based on Association Matrices
177(15)
2.3 Intuitionistic Fuzzy Hierarchical Clustering Algorithms
192(7)
2.4 Intuitionistic Fuzzy Orthogonal Clustering Algorithm
199(10)
2.5 Intuitionistic Fuzzy C-Means Clustering Algorithms
209(12)
2.6 Intuitionistic Fuzzy MST Clustering Algorithm
221(8)
2.7 Intuitionistic Fuzzy Clustering Algorithm Based on Boole Matrix and Association Measure
229(18)
2.7.1 Intuitionistic Fuzzy Association Measures
229(3)
2.7.2 Intuitionistic Fuzzy Clustering Algorithm
232(2)
2.7.3 Numerical Example
234(7)
2.7.4 Interval-Valued Intuitionistic Fuzzy Clustering Algorithm
241(6)
2.8 A Netting Method for Clustering Intuitionistic Fuzzy Information
247(12)
2.8.1 An Approach to Constructing Intuitionistic Fuzzy Similarity Matrix
247(3)
2.8.2 A Netting Clustering Method
250(1)
2.8.3 Illustrative Examples
251(8)
2.9 Direct Cluster Analysis Based on Intuitionistic Fuzzy Implication
259(10)
2.9.1 The Intuitionistic Fuzzy Implication Operator and Intuitionistic Fuzzy Products
259(3)
2.9.2 The Applications of Two Intuitionistic Fuzzy Products
262(1)
2.9.3 The Application of the Intuitionistic Fuzzy Triangle Product
262(2)
2.9.4 The Application of the Intuitionistic Fuzzy Square Product
264(1)
2.9.5 A Direct Intuitionistic Fuzzy Cluster Analysis Method
265(4)
References 269(6)
Index 275
Zeshui Xu received the PhD degree in management science and engineering from Southeast University, Nanjing, China, in 2003. From April 2003 to May 2005, he was a Postdoctoral Researcher with the School of Economics and Management, Southeast University. From October 2005 to December 2007, he was a Postdoctoral Researcher with the School of Economics and Management, Tsinghua University, Beijing, China. From November 2008 to February 2009, February 2010 to May 2010,  February 2011 to May 2011, and on August 2009, he was a Visiting Research Scholar at the Chinese University of Hong Kong, Shatin, N.T., Hong Kong. He is currently an IEEE Senior Member, Reviewer of Mathematical Reviews of American Mathematical Society, and an Adjunct Professor with the Antai School of Economic and Management, Shanghai Jiaotong University, Shanghai, China; an Adjunct Professor with the School of Economics and Management, Southeast University Nanjing, Jiangsu, China. He is also currently a Chair Professor with the Sciences Institute, PLA University of Science and Technology, Nanjing, China. He serves on the Editorial Boards of Information: An International Journal, International Journal of Applied Management Science, International Journal of Data Analysis Techniques and Strategies, System EngineeringTheory and Practice, Journal of Systems Engineering, and Fuzzy Systems and Mathematics. He has authored three books, and has contributed more than 300 journal articles to professional journals, including IEEE Transactions on Fuzzy Systems, IEEE Transactions on Systems, Man, and Cybernetics, Information Sciences, European Journal of Operational Research, Omega, Decision Support Systems, Journal of Optimization Theory and Applications, Fuzzy Sets and Systems, Group Decision and Negotiation, International Journal of Approximate reasoning, Information Fusion, International Journal of Intelligent Systems, Computers & Industrial Engineering, Expert Systems With Applications, SoftComputing, Applied Soft Computing, Knowledge-Based Systems, International Journal of General Systems, Fuzzy Optimization and Decision Making, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, and International Journal of Information Technology and Decision Making, etc. His current research interests include information fusion, group decision making, computing with words, intuitionistic fuzzy sets, and aggregation operators.