Muutke küpsiste eelistusi

E-raamat: Inverse Problems for Partial Differential Equations

  • Formaat: PDF+DRM
  • Sari: Applied Mathematical Sciences 127
  • Ilmumisaeg: 02-Jun-2006
  • Kirjastus: Springer-Verlag New York Inc.
  • Keel: eng
  • ISBN-13: 9780387321837
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Applied Mathematical Sciences 127
  • Ilmumisaeg: 02-Jun-2006
  • Kirjastus: Springer-Verlag New York Inc.
  • Keel: eng
  • ISBN-13: 9780387321837
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

In 8 years after publication of the ?rst version of this book, the rapidly progre- ing ?eld of inverse problems witnessed changes and new developments. Parts of the book were used at several universities, and many colleagues and students as well as myself observed several misprints and imprecisions. Some of the research problems from the ?rst edition have been solved. This edition serves the purposes of re ecting these changes and making appropiate corrections. I hope that these additions and corrections resulted in not too many new errors and misprints. Chapters 1 and 2 contain only 23 pages of new material like in sections 1.5, 2.5. Chapter 3 is considerably expanded. In particular we give more convenient de nition of pseudo-convexity for second order equations and included bou- ary terms in Carleman estimates (Theorem 3.2.1 ) and Counterexample 3.2.6. We give a new, shorter proof of Theorem 3.3.1 and new Theorems 3.3.7, 3.3.12, and Counterexample 3.3.9. We revised section 3.4, where a new short proof of exact observability inequality in given: proof of Theorem 3.4.1 and Theorems 3.4.3, 3.4.4, 3.4.8, 3.4.9 are new. Section 3.5 is new and it exposes recent progress on Carleman estimates, uniqueness and stability of the continuation for systems. In Chapter 4 we added to sections 4.5, 4.6 some new material on size evaluation of inclusionsandonsmallinclusions.Chapter5containsnewresultsonidenti cation

Arvustused

From the reviews of the second edition:









"The first edition of this excellent book appeared in 1998 and became a standard reference for everyone interested in analysis and numerics of inverse problems in partial differential equations. The second edition is considerably expanded and reflects important recent developments in the field . Some of the research problems from the first edition have been solved ." (Johannes Elschner, Zentralblatt MATH, Vol. 1092 (18), 2006)

Muu info

2nd edition
Preface to the Second Edition vii
Preface to the First Edition ix
Inverse Problems
1(19)
The inverse problem of gravimetry
1(4)
The inverse conductivity problem
5(2)
Inverse scattering
7(3)
Tomography and the inverse seismic problem
10(4)
Inverse spectral problems
14(6)
Ill-Posed Problems and Regularization
20(21)
Well- and ill-posed problems
20(3)
Conditional correctness: Regularization
23(3)
Construction of regularizers
26(7)
Convergence of regularization algorithms
33(4)
Iterative algorithms
37(4)
Uniqueness and Stability in the Cauchy Problem
41(48)
The backward parabolic equation
42(9)
General Carleman estimates and the Cauchy problem
51(6)
Elliptic and parabolic equations
57(8)
Hyperbolic and Schrodinger equations
65(15)
Systems of partial differential equations
80(6)
Open problems
86(3)
Elliptic Equations: Single Boundary Measurements
89(38)
Results on elliptic boundary value problems
89(3)
Inverse gravimetry
92(5)
Reconstruction of lower-order terms
97(5)
The inverse conductivity problem
102(9)
Methods of the theory of one complex variable
111(5)
Linearization of the coefficients problem
116(3)
Some problems of detection of defects
119(6)
Open problems
125(2)
Elliptic Equations: Many Boundary Measurements
127(46)
The Dirichlet-to-Neumann map
127(3)
Boundary reconstruction
130(4)
Reconstruction in Ω
134(4)
Completeness of products of solutions of PDE
138(5)
Recovery of several coefficients
143(6)
The plane case
149(5)
Nonlinear equations
154(6)
Discontinuous conductivities
160(6)
Maxwell's and elasticity systems
166(4)
Open problems
170(3)
Scattering Problems
173(19)
Direct Scattering
173(3)
From A to near field
176(4)
Scattering by a medium
180(4)
Scattering by obstacles
184(6)
Open problems
190(2)
Integral Geometry and Tomography
192(26)
The Radon transform and its inverse
192(9)
The energy integral methods
201(4)
Boman's counterexample
205(3)
The transport equation
208(7)
Open problems
215(3)
Hyperbolic Problems
218(37)
Introduction
218(3)
The one-dimensional case
221(8)
Single boundary measurements
229(7)
Many measurements: use of beam solutions
236(7)
Many measurements: methods of boundary control
243(6)
Recovery of discontinuity of the speed of propagation
249(4)
Open problems
253(2)
Inverse parabolic problems
255(42)
Introduction
255(4)
Final overdetermination
259(5)
Lateral overdetermination: single measurements
264(6)
The inverse problem of option pricing
270(5)
Lateral overdetermination: many measurements
275(4)
Discontinuous principal coefficient and recovery of a domain
279(9)
Nonlinear equations
288(5)
Interior sources
293(2)
Open problems
295(2)
Some Numerical Methods
297(24)
Linearization
298(5)
Variational regularization of the Cauchy problem
303(5)
Relaxation methods
308(2)
Layer-stripping
310(3)
Range test algorithms
313(5)
Discrete methods
318(3)
Appendix. Functional Spaces 321(3)
References 324(19)
Index 343