Muutke küpsiste eelistusi

E-raamat: Inverse Variational Problem In Classical Mechanics, The

(Univ Of Wroclaw, Poland)
  • Formaat: 236 pages
  • Ilmumisaeg: 05-Nov-1999
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789814493796
  • Formaat - PDF+DRM
  • Hind: 46,80 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 236 pages
  • Ilmumisaeg: 05-Nov-1999
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789814493796

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book provides a concise description of the current status of a fascinating scientific problem the inverse variational problem in classical mechanics. The essence of this problem is as follows: one is given a set of equations of motion describing a certain classical mechanical system, and the question to be answered is: Do these equations of motion correspond to some Lagrange function as its Euler-Lagrange equations? In general, not for every system of equations of motion does a Lagrange function exist; it can, however, happen that one may modify the given equations of motion in such a way that they yield the same set of solutions as the original ones and they correspond already to a Lagrange function. Moreover, there can even be infinitely many such Lagrange functions, the relations among which are not trivial. The book deals with this scope of problems. No advanced mathematical methods, such as, contemporary differential geometry, are used. The intention is to meet the standard educational level of a broad group of physicists and mathematicians. The book is well suited for use as lecture notes in a university course for physicists.
Foreword vii
Preliminary notions of Kinematics. Translations, proper rotations SO(3), Galilei group transformations
1(6)
Preliminary notions of Analytical Dynamics. Newton's Equations.
7(3)
Constraints. Work. The Principle of Least Action. Euler-Lagrange Equations
10(6)
Constants of motion
14(2)
Poincare Lemma and its converse
16(6)
Linear partial differential equations. The method of characteristics
19(3)
The Inverse Variational Problem. Helmholtz's Conditions
22(22)
Theorem of Henneaux
33(6)
The matrix σ. Tr σα is conserved quantity
39(5)
Instructive example of Cislo
44(8)
Instructive example of Douglas
50(1)
Instructive example of Pardo
51(1)
Construction of an autonomous one-particle Lagrange function in (3+1) space-time dimensions yielding rotationally covariant Euler-Lagrange Equations coinciding with the Newton Equations.
52(18)
Canonical variables. Equivalence problem of the Lagrange functions
66(4)
All Lagrange functions, s-equivalent to the Lagrange function L = 1/2x2 -- U (|x|), in (3+1) space-time dimensions
70(43)
The case U (|x|) ≠ αx2 + β, where α, β -- constants
75(11)
The case U (|x|) = αx2 + βW
86(6)
The Hamilton formalism for the model investigated in Subsections 8.1 - 8.3. Equivalence sets of Lagrange functions
92(5)
Examples
97(16)
Example of Henneaux and Shepley
98(3)
Example of Stichel
101(3)
Example of Ranada
104(3)
Second example of Ranada
107(2)
Example of Cislo
109(4)
The model of Subsections 8.1 - 8.4 for n ≠ 3
113(2)
All autonomous s-equivalent one-particle Lagrange functions for (1+1) space-time dimensions
115(7)
All s-equivalent one-particle Lagrange functions for (1+1) space-time dimensions
120(2)
Construction of the most general autonomous one-particle Lagrange function in (3+1) space-time dimensions giving rise to rotationally covariant Euler-Lagrange Equations
122(22)
Evaluation of the Function Gij
124(13)
Symmetry of Gij and evaluation of the Lagrange function
137(4)
Symmetry properties of the Lagrange function
141(3)
The largest set of Lagrange functions of one-particle system in a (3+1) dimensional space-time, s-equivalent to a given Lagrange function yielding rotationally forminvariant Equations of Motion (formulation of the problem)
144(11)
Construction of the most general two-particle Lagrange function in (1+1) space-time dimensions giving rise to Euler-Lagrange Equations covariant under Galilei transformation
155(12)
Galilei forminvariance of the Euler-Lagrange Equations for two particles in (1 + 1) space-time dimensions
163(4)
Construction of the most general two-particle Lagrange function in (3+1) space-time dimensions giving rise to Euler-Lagrange Equations covariant under Galilei transformations
167(13)
Galilei forminvariance of the Euler-Lagrange Equations for two particles in (3 + 1) space-time dimensions
177(3)
All two-particle Lagrange functions s-equivalent to a given autonomous Lagrange function yielding Galilei forminvariant Equations of Motion in (1 + 1) space-time dimensions
180(31)
All Euler-Lagrange Equations, forminvariant under the Galilei transformations
181(17)
Case g ≠ 0
184(8)
Case g ≠ 0
192(6)
Examples
198(6)
Generalization of the set of Lagrange functions L (admission of Euler-Lagrange Equations not covariant under Galilei transformations)
204(4)
Case of Galilei forminvariant Newton's Equations corresponding to Euler-Lagrange Equations which are not Galilei covariant (formulation of the problem)
208(3)
An Outlook. Application in the Feynman Approach to Quantum Mechanics
211(9)
Index 220