Muutke küpsiste eelistusi

E-raamat: Ionization and Plasma Dynamics of Single Large Xenon Clusters in Superintense XUV Pulses

  • Formaat: PDF+DRM
  • Sari: Springer Theses
  • Ilmumisaeg: 14-Jan-2016
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319286495
  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Springer Theses
  • Ilmumisaeg: 14-Jan-2016
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319286495

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

At the heart of this thesis is the young field of free electron laser science, whose experimental and theoretical basics are described here in a comprehensible manner. Extremely bright and ultra short pulses from short wavelength free-electron lasers (FELs) have recently opened the path to new fields of research. The x-ray flashes transform all matter into highly excited plasma states within femtoseconds, while their high spatial and temporal resolution allows the study of fast processes in very small structures. Even imaging of single molecules may be within reach if ultrafast radiation damage can be understood and brought under control.

Atomic clusters have proven to be ideal model systems for light-matter interaction studies in all wavelength regimes, being size scalable, easy-to-produce gas phase targets with a simple structure. With FELs, "single cluster imaging and simultaneous ion spectroscopy" makes possible experiments under extremely well defined initial conditions, because the size of the cluster and the FEL intensity can be extracted from the scattering images. For the first time large xenon clusters up to micron radius were generated. Their single cluster scattering images were analyzed for cluster morphology and traces of the ultrafast plasma built-up during the femtosecond FEL pulse. The simultaneously measured single cluster ion spectra yield unprecedented insight into the ion dynamics following the interaction. The results will feed both future experimental effort and theoretical modeling.

1 Theoretical Concepts for Single Cluster Imaging
1(56)
1.1 Introduction: X-Ray Imaging of Single Nanoparticles
1(3)
1.2 Propagation, Absorption and Scattering of Light in Matter
4(25)
1.2.1 Wavelength Dependent Response of Matter
5(2)
1.2.2 Scattering from Free and Bound Electrons
7(7)
1.2.3 Scattering from a Spherical Particle
14(15)
1.3 Atoms in Intense XUV Pulses
29(8)
1.3.1 Wavelength Dependent Nonlinear Processes
29(4)
1.3.2 Ionization Properties of Atomic Xenon in the XUV Range
33(4)
1.4 Clusters in Intense Laser Pulses
37(20)
1.4.1 Clusters as Model Systems for Laser-Matter Interaction
37(2)
1.4.2 Properties and Dynamics of a Nanoplasma
39(5)
1.4.3 Rare Gas Clusters in Intense Short-Wavelength Pulses
44(8)
References
52(5)
2 Experimental Setup
57(26)
2.1 FLASH Free-Electron Laser for Short Wavelength Radiation
57(9)
2.1.1 Basic Principle of a Free-Electron Laser
58(4)
2.1.2 Characteristics of the FLASH FEL
62(1)
2.1.3 Guiding and Focussing Optics for XUV Light
63(3)
2.2 Experiment for Imaging and Ion Spectroscopy of Single Clusters
66(17)
2.2.1 Experimental Layout
67(1)
2.2.2 Cluster Generation
67(6)
2.2.3 Detection of Scattered Light
73(2)
2.2.4 Ion Detection
75(5)
References
80(3)
3 Results and Discussion: Imaging and Ion Spectroscopy of Single Large Xenon Clusters
83(64)
3.1 Introduction
83(2)
3.2 Measurements in Single-Particle Mode
85(4)
3.2.1 Statistics in Single-Particle Mode
85(1)
3.2.2 Data Acquisition and Processing
86(1)
3.2.3 The Limit of Single Particle Mode: Newton Rings
87(2)
3.3 Information on Cluster Morphology in Single Cluster Scattering Patterns
89(13)
3.3.1 The Shape of Clusters Changing with Size
90(6)
3.3.2 Time Structure of a Pulsed Jet
96(6)
3.4 Ejection of Surface Ions from a Quasi-Neutral Nanoplasma
102(19)
3.4.1 The Concept of Exposure Power Density (epd)
102(2)
3.4.2 SIMION Simulation of the Bipolar Time-of-Flight Spectrometer
104(5)
3.4.3 Size Dependent Effects in Kinetic Energy Distributions
109(4)
3.4.4 Recombination Versus Expansion in a Large Dense Nanoplasma
113(3)
3.4.5 Net Charge Versus Charge Separation at the Surface
116(5)
3.5 Fingerprints of a Nanoplasma Shell in Size-Selected Scattering Profiles
121(26)
3.5.1 Modulation in Size-Sorted Scattering Profiles
122(3)
3.5.2 Time-Binning of the Nanoplasma Development
125(3)
3.5.3 Simulation of Scattering Profiles from Core-Shell Systems
128(5)
3.5.4 Optical Properties of a Dense Xenon Nanoplasma
133(4)
3.5.5 Simulation of Radial Charge State Densities
137(5)
3.5.6 Conclusions for the Scattering Data and Discussion
142(1)
References
143(4)
4 Summary and Outlook
147(2)
References 149(2)
Appendix A Detector Calibration 151(6)
Appendix B ID Monte-Carlo Simulation of Light Penetration 157