Muutke küpsiste eelistusi

E-raamat: IoT for Smart Operations in the Oil and Gas Industry: From Upstream to Downstream

(PhD Candidate, University of Louisiana at Lafayette, Lafayette, LA, USA), , (Formerly Professor, University of Lo), (Researcher, High-Performance Cloud Computing (HPCC) laboratory, University of Louisiana at Lafayette. Lafayette, LA, USA)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 20-Sep-2022
  • Kirjastus: Gulf Publishing Company
  • Keel: eng
  • ISBN-13: 9780323998444
  • Formaat - PDF+DRM
  • Hind: 147,42 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 20-Sep-2022
  • Kirjastus: Gulf Publishing Company
  • Keel: eng
  • ISBN-13: 9780323998444

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

IoT for Smart Operations in the Oil and Gas Industry elaborates on how the synergy between state-of-the-art computing platforms, such as Internet of Things (IOT), cloud computing, artificial intelligence, and, in particular, modern machine learning methods, can be harnessed to serve the purpose of a more efficient oil and gas industry. The reference explores the operations performed in each sector of the industry and then introduces the computing platforms and smart technologies that can enhance the operation, lower costs, and lower carbon footprint. Safety and security content is included, in particular, cybersecurity and potential threats to smart oil and gas solutions, focusing on adversarial effects of smart solutions and problems related to the interoperability of human-machine intelligence in the context of the oil and gas industry. Detailed case studies are included throughout to learn and research for further applications. Covering the latest topics and solutions, IoT for Smart Operations in the Oil and Gas Industry delivers a much-needed reference for the engineers and managers to understand modern computing paradigms for Industry 4.0 and the oil and gas industry.
  • Follows a systematic and categorical taxonomy of the upstream, midstream, and downstream processes paired with cutting-edge technologies, which benefit computer scientists and engineers
  • Understands advanced computing technologies reducing the costs of existing operations and carbon footprint
  • Deeply dives into case studies that cover the entire oil and gas spectrum and explain bridges into applications
1. Introduction to Smart O&G Industry
2. Smart Upstream Sector
3. Smart Midstream of O&G Industry
4. Smart Downstream Sector of O&G Industry
5. Threats and Side-Effects of Smart Solutions in Oil and Gas Industry
6. Designing a Disaster Management System for Smart Oil Fields
7. Case Study I: Analysis of Oil Spill Detection Using Deep Neural Networks
8. Case Study II: Evaluating DNN Applications in Smart O&G Industry
Razin Farhan Hussain is currently a researcher at the High-Performance Cloud Computing (HPCC) laboratory at the University of Louisiana at Lafayette. His research interest includes efficient utilization of fog computing for Industry 4.0 applications and Deep Neural Network models. Ali Mokhtari is currently a researcher at the High-Performance Cloud Computing (HPCC) laboratory at the University of Louisiana at Lafayette. His research interest is in deploying Artificial Intelligence (AI) methods in Edge-Cloud systems. Ali Ghalambor, P.E. is currently an international consultant with more than 45 years of industrial and academic experience. He served as the API Endowed Professor, Head of the Petroleum Engineering Department, and Director of the Energy Institute at the University of Louisiana at Lafayette. Mohsen Amini Salehi is currently Associate Professor at the School of Computing and Informatics, University of Louisiana at Lafayette. He is the director of High-Performance Cloud Computing (HPCC) laboratory where researchers explore the applications of Cloud and Edge computing in Industry 4.0 use cases.