Muutke küpsiste eelistusi

E-raamat: Item Response Theory: Parameter Estimation Techniques, Second Edition

Edited by (University of Georgia, Athens, USA), Edited by (University of Wisconsin, Madison, USA)
  • Formaat - PDF+DRM
  • Hind: 57,19 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Item Response Theory clearly describes the most recently developed IRT models and furnishes detailed explanations of algorithms that can be used to estimate the item or ability parameters under various IRT models. Extensively revised and expanded, this edition offers three new chapters discussing parameter estimation with multiple groups, parameter estimation for a test with mixed item types, and Markov chain Monte Carlo methods. It includes discussions on issues related to statistical theory, numerical methods, and the mechanics of computer programs for parameter estimation, which help to build a clear understanding of the computational demands and challenges of IRT estimation procedures.

Item Response Theory clearly describes the most recently developed IRT models and furnishes detailed explanations of algorithms that can be used to estimate the item or ability parameters under various IRT models.

Arvustused

"an excellent resource for the serious investigator doing research involving estimation of IRT model parameters." -Journal of the American Statistical Association

"Baker has the unique ability to present complex material in a form that is easily understood.This book belongs on the bookshelf of every advanced student in psychometrics. It should also prove invaluable to students in statistics." -Journal of Educational Measurement

The Item Characteristic Curve: Dichotomous Response. Estimating the Parameters of an Item Characteristic Curve. Maximum Likelihood Estimation of Examinee Ability. Maximum Likelihood Procedures for Estimating Both Ability and Item Parameters. The Rasch Model. Marginal Maximum Likelihood Estimation and an EM Algorithm. Bayesian Parameter Estimation Procedures. The Graded Item Response. Nominally Scored Items. Markov Chain Monte Carlo Methods. Parameter Estimation with Multiple Groups. Parameter Estimation for a Test with Mixed Item Types

Frank B. Baker, Seock-Ho Kim