|
|
ix | (2) |
|
|
xi | (2) |
|
|
xiii | |
|
|
3 | (10) |
|
|
3 | (1) |
|
1.2 Definition and History |
|
|
4 | (1) |
|
1.3 The EXXXBeta (1) Interaction |
|
|
5 | (2) |
|
|
7 | (2) |
|
1.5 Icosahedral Complexes |
|
|
9 | (4) |
|
1.5.1 C(60)-Based Materials |
|
|
9 | (2) |
|
1.5.2 Other Icosahedral Clusters |
|
|
11 | (2) |
|
2. Icosahedral Symmetry and Its Effects |
|
|
13 | (18) |
|
|
13 | (1) |
|
2.2 Geometry of C(60) and the Group I(h) |
|
|
13 | (3) |
|
2.3 Irreducible Representations of I(h) |
|
|
16 | (3) |
|
2.3.1 Spin Representations: The Double Group |
|
|
19 | (1) |
|
2.4 Electron-Phonon Interactions |
|
|
19 | (3) |
|
2.5 Vibrational Modes and Their Symmetries |
|
|
22 | (3) |
|
2.6 Ham Reduction Factors |
|
|
25 | (2) |
|
2.7 Icosahedral Jahn-Teller Systems |
|
|
27 | (4) |
|
2.7.1 T XXX h and P(n) XXX h |
|
|
27 | (1) |
|
|
28 | (1) |
|
|
28 | (3) |
|
3. T XXX h and P(n) XXX h |
|
|
31 | (36) |
|
|
31 | (1) |
|
3.2 The Potential Energy Surfaces |
|
|
32 | (7) |
|
3.2.1 Rotational Symmetry of T(1) XXX h |
|
|
32 | (3) |
|
3.2.2 The Shape of the Distorted Molecule |
|
|
35 | (1) |
|
3.2.3 "Warping" of the Lowest-APES |
|
|
36 | (2) |
|
3.2.4 Modification for T(2) XXX h 3.2.4 Modification for T(2) XXX h |
|
|
38 | (1) |
|
3.3 The Ground States at Strong Coupling |
|
|
39 | (8) |
|
3.3.1 The Ground States in the Adiabatic Approximation |
|
|
39 | (2) |
|
3.3.2 The Ham Factors in T(1) XXX h |
|
|
41 | (1) |
|
3.3.3 The Ham Factors in T(2) XXX h |
|
|
42 | (1) |
|
3.3.4 The Ground State with Warping |
|
|
43 | (4) |
|
3.4 Intermediate Coupling Strength |
|
|
47 | (3) |
|
3.5 Multiple Occupation of T(1) Orbitals |
|
|
50 | (11) |
|
3.5.1 The Configurations P(2) and P(4) |
|
|
51 | (3) |
|
3.5.2 The Configuration P(3) |
|
|
54 | (3) |
|
3.5.3 Numerical Work on p(n) |
|
|
57 | (1) |
|
3.5.4 Term Splittings and Energy Ordering |
|
|
58 | (3) |
|
3.6 Optical Absorption Spectra |
|
|
61 | (3) |
|
|
61 | (2) |
|
3.6.2 Absorption Bands in Solids: The Cluster Model |
|
|
63 | (1) |
|
3.7 The Introduction of Spin-Orbit Coupling |
|
|
64 | (3) |
|
|
64 | (1) |
|
3.7.2 XXX Comparable to or Larger than E(JT) |
|
|
65 | (2) |
|
4. Electronic Quartets and GXXX(g XXX h) |
|
|
67 | (24) |
|
|
67 | (1) |
|
|
68 | (9) |
|
4.2.1 The Method of Opik and Pryce |
|
|
68 | (3) |
|
4.2.2 Biharmonic Parametrization of the G Bases |
|
|
71 | (2) |
|
4.2.3 The Geometry of the Ground States |
|
|
73 | (2) |
|
4.2.4 Numerical Phase Tracking |
|
|
75 | (1) |
|
4.2.5 The Ham Factors in G XXX g |
|
|
76 | (1) |
|
4.3 Symmetry and the Two Phase Spaces |
|
|
77 | (1) |
|
|
78 | (3) |
|
4.4.1 Phase Tracking and the Ground States |
|
|
79 | (2) |
|
4.4.2 The Ham Factors in G XXX h |
|
|
81 | (1) |
|
|
81 | (6) |
|
4.5.1 G XXX (g XXX h)(eq) and SO(4) Symmetry |
|
|
83 | (3) |
|
|
86 | (1) |
|
4.5.3 Other Relative Coupling Strengths |
|
|
86 | (1) |
|
|
87 | (3) |
|
4.7 An Overview of G XXX (g XXX h) |
|
|
90 | (1) |
|
5. Electronic Quintets and HXXX(g XXX h) |
|
|
91 | (20) |
|
|
91 | (1) |
|
|
92 | (3) |
|
|
95 | (5) |
|
|
100 | (5) |
|
5.4.1 Bases and the Hamiltonian |
|
|
100 | (1) |
|
5.4.2 Rotational Symmetry of H XXX h(2) |
|
|
100 | (2) |
|
5.4.3 The Ground States at Strong Coupling |
|
|
102 | (3) |
|
|
105 | (1) |
|
5.6 H XXX (g XXX h(4)(eq) |
|
|
106 | (1) |
|
5.7 H XXX (g XXX h(4) XXX h(2))(eq) |
|
|
107 | (3) |
|
5.7.1 The Ham Reduction Factors |
|
|
108 | (2) |
|
|
110 | (1) |
|
|
111 | (46) |
|
6.1 Multimode Effects: Cluster Models |
|
|
111 | (10) |
|
6.1.1 A Cluster Model for the Low Energy States |
|
|
112 | (8) |
|
6.1.2 A Cluster for Optical Absorption |
|
|
120 | (1) |
|
6.2 Electron Spin Resonance |
|
|
121 | (18) |
|
6.2.1 Jahn-Teller Interactions in the Spin Representations of the Group I |
|
|
122 | (1) |
|
6.2.2 The Spin Hamiltonian |
|
|
123 | (1) |
|
|
124 | (6) |
|
6.2.4 The Spin Hamiltonian for Spin Triplet States |
|
|
130 | (2) |
|
6.2.5 Esr on C(60): Experiment and Theory |
|
|
132 | (7) |
|
6.3 Energy Levels in C(60)(n-) |
|
|
139 | (3) |
|
6.3.1 C(60) Vibrational Modes and Their Coupling |
|
|
139 | (1) |
|
6.3.2 Configuration Interaction in C(60)(n-) |
|
|
140 | (2) |
|
|
142 | (3) |
|
6.4.1 Symmetry-Lowering Distortions |
|
|
142 | (1) |
|
6.4.2 Allowed Transitions |
|
|
143 | (1) |
|
6.4.3 Experimental Evidence |
|
|
144 | (1) |
|
|
145 | (2) |
|
|
147 | (4) |
|
6.7 Superconductivity in the Fullerides |
|
|
151 | (6) |
|
6.7.1 C(60): Molecular Crystal |
|
|
151 | (1) |
|
6.7.2 Superconducting Fullerides |
|
|
151 | (1) |
|
|
152 | (4) |
Appendixes |
|
157 | (42) |
|
A. Adiabatic Approximation |
|
|
157 | (4) |
|
A.1 Corrections to the Adiabatic Approximation |
|
|
159 | (2) |
|
B. Quantum Tunneling Energies |
|
|
161 | (8) |
|
|
161 | (1) |
|
B.2 One-Dimensional Potentials |
|
|
161 | (3) |
|
B.3 Higher Dimensionality |
|
|
164 | (1) |
|
B.4 The WKB Approximation and Its Applications |
|
|
165 | (4) |
|
B.4.1 One-Dimensional Application |
|
|
166 | (1) |
|
B.4.2 WKB in More Dimensions |
|
|
167 | (2) |
|
|
169 | (4) |
|
|
173 | (2) |
|
E. Jahn-Teller Interaction Matrices and Their Bases |
|
|
175 | (4) |
|
|
175 | (4) |
|
E.1.1 L equal to 1 and L equal to 2 Bases |
|
|
175 | (1) |
|
E.1.2 Bases from L equal to 3 and Upwards |
|
|
176 | (1) |
|
E.1.3 Interaction Matrices |
|
|
177 | (2) |
|
|
179 | (4) |
|
F.1 Parametrizations of the h Modes |
|
|
179 | (1) |
|
F.2 Rotations to Diagonalize H XXX h(2) |
|
|
180 | (1) |
|
F.3 Rotations to Diagonalize T XXX h |
|
|
181 | (1) |
|
F.4 Representation of a Rotating Quadrupole |
|
|
181 | (2) |
|
G. Parameters of the Jahn-Teller Minima and Other Stationary Points |
|
|
183 | (6) |
|
H. Cited References and Bibliography |
|
|
189 | (10) |
|
|
189 | (5) |
|
|
194 | (5) |
|
H.2.1 Molecular Quantum Mechanics |
|
|
194 | (1) |
|
H.2.2 Group Theory and Techniques |
|
|
194 | (1) |
|
H.2.3 The Icosahedral Group |
|
|
195 | (1) |
|
H.2.4 The Jahn-Teller Effect |
|
|
195 | (1) |
|
H.2.5 Icosahedral Systems |
|
|
195 | (1) |
|
|
196 | (1) |
|
|
196 | (1) |
|
|
197 | (1) |
|
H.2.9 Superconductivity in the Fullerides |
|
|
198 | (1) |
|
|
198 | (1) |
INDEX |
|
199 | |