Muutke küpsiste eelistusi

E-raamat: Joy of Sets: Fundamentals of Contemporary Set Theory

  • Formaat - PDF+DRM
  • Hind: 62,97 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book provides an account of those parts of contemporary set theory of direct relevance to other areas of pure mathematics. The intended reader is either an advanced-level mathematics undergraduate, a beginning graduate student in mathematics, or an accomplished mathematician who desires or needs some familiarity with modern set theory. The book is written in a fairly easy-going style, with minimal formalism. In Chapter 1, the basic principles of set theory are developed in a 'naive' manner. Here the notions of 'set', 'union', 'intersection', 'power set', 'rela­ tion', 'function', etc., are defined and discussed. One assumption in writing Chapter 1 has been that, whereas the reader may have met all of these 1 concepts before and be familiar with their usage, she may not have con­ sidered the various notions as forming part of the continuous development of a pure subject (namely, set theory). Consequently, the presentation is at the same time rigorous and fast.

Muu info

Springer Book Archives
Preface v
1 Naive Set Theory
1(28)
1.1 What is a Set?
1(3)
1.2 Operations on Sets
4(2)
1.3 Notation for Sets
6(1)
1.4 Sets of Sets
7(3)
1.5 Relations
10(2)
1.6 Functions
12(4)
1.7 Well-Orderings and Ordinals
16(9)
1.8 Problems
25(4)
2 The Zermelo--Fraenkel Axioms
29(37)
2.1 The Language of Set Theory
30(5)
2.2 The Cumulative Hierarchy of Sets
35(5)
2.3 The Zermelo-Fraenkel Axioms
40(6)
2.4 Classes
46(4)
2.5 Set Theory as an Axiomatic Theory
50(1)
2.6 The Recursion Principle
51(5)
2.7 The Axiom of Choice
56(7)
2.8 Problems
63(3)
3 Ordinal and Cardinal Numbers
66(35)
3.1 Ordinal Numbers
66(2)
3.2 Addition of Ordinals
68(1)
3.3 Multiplication of Ordinals
69(2)
3.4 Sequences of Ordinals
71(3)
3.5 Ordinal Exponentiation
74(1)
3.6 Cardinality, Cardinal Numbers
75(7)
3.7 Arithmetic of Cardinal Numbers
82(6)
3.8 Regular and Singular Cardinals
88(3)
3.9 Cardinal Exponentiation
91(4)
3.10 Inaccessible Cardinals
95(3)
3.11 Problems
98(3)
4 Topics in Pure Set Theory
101(19)
4.1 The Borel Hierarchy
101(2)
4.2 Closed Unbounded Sets
103(3)
4.3 Stationary Sets and Regressive Functions
106(3)
4.4 Trees
109(4)
4.5 Extensions of Lebesgue Measure
113(3)
4.6 A Result About the GCH
116(4)
5 The Axiom of Constructibility
120(10)
5.1 Constructible Sets
120(3)
5.2 The Constructible Hierarchy
123(1)
5.3 The Axiom of Constructibility
124(3)
5.4 The Consistency of V = L
127(1)
5.5 Use of the Axiom of Constructibility
128(2)
6 Independence Proofs in Set Theory
130(13)
6.1 Some Undecidable Statements
130(1)
6.2 The Idea of a Boolean-Valued Universe
130(3)
6.3 The Boolean-Valued Universe
133(3)
6.4 VB and V
136(1)
6.5 Boolean-Valued Sets and Independence Proofs
137(2)
6.6 The Nonprovability of the CH
139(4)
7 Non-Well-Founded Set Theory
143(42)
7.1 Set-Membership Diagrams
145(6)
7.2 The Anti-Foundation Axiom
151(5)
7.3 The Solution Lemma
156(3)
7.4 Inductive Definitions Under AFA
159(4)
7.5 Graphs and Systems
163(5)
7.6 Proof of the Solution Lemma
168(1)
7.7 Co-Inductive Definitions
169(4)
7.8 A Model of ZF- +AFA
173(12)
Bibliography 185(1)
Glossary of Symbols 185(4)
Index 189