Muutke küpsiste eelistusi

E-raamat: Kahler Immersions of Kahler Manifolds into Complex Space Forms

  • Formaat - EPUB+DRM
  • Hind: 49,39 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The aim of this book is to describe Calabi's original work on Kähler immersions of Kähler manifolds into complex space forms, to provide a detailed account of what is known today on the subject and to point out some open problems. 







Calabi's pioneering work, making use of the powerful tool of the diastasis function, allowed him to obtain necessary and sufficient conditions for a neighbourhood of a point to be locally Kähler immersed into a finite or infinite-dimensional complex space form. This led to a classification of (finite-dimensional) complex space forms admitting a Kähler immersion into another, and to decades of further research on the subject.







Each chapter begins with a brief summary of the topics to be discussed and ends with a list of exercises designed to test the reader's understanding. Apart from the section on Kähler immersions of homogeneous bounded domains into the infinite complex projective space, which could be skipped without compromising the understanding of the rest of the book, the prerequisites to read this book are a basic knowledge of complex and Kähler geometry.





 
1 The Diastasis Function
1(12)
1.1 Calabi's Diastasis Function
1(4)
1.2 Complex Space Forms
5(2)
1.3 The Indefinite Hilbert Space
7(3)
Exercises
10(3)
2 Calabi's Criterion
13(16)
2.1 Kahler Immersions into the Complex Euclidean Space
13(6)
2.2 Kahler Immersions into Nonflat Complex Space Forms
19(5)
2.3 Kahler Immersions of a Complex Space Form into Another
24(3)
Exercises
27(2)
3 Homogeneous Kahler Manifolds
29(18)
3.1 A Result About Kahler Immersions of Homogeneous Bounded Domains into CP∞
29(3)
3.2 Kahler Immersions of Homogeneous Kahler Manifolds into CN≤∞ and CHN≤∞
32(3)
3.3 Kahler Immersions of Homogeneous Kahler Manifolds into CPN≤∞
35(2)
3.4 Bergman Metric and Bounded Symmetric Domains
37(3)
3.5 Kahler Immersions of Bounded Symmetric Domains into CP∞
40(4)
Exercises
44(3)
4 Kahler--Einstein Manifolds
47(16)
4.1 Kahler Immersions of Kahler-Einstein Manifolds into CHN or CN
48(4)
4.2 Kahler Immersions of KE Manifolds into CPN: The Einstein Constant
52(4)
4.3 Kahler Immersions of KE Manifolds into CPN: Codimension 1 and 2
56(4)
Exercises
60(3)
5 Hartogs Type Domains
63(12)
5.1 Cartan-Hartogs Domains
63(6)
5.2 Bergman-Hartogs Domains
69(1)
5.3 Rotation Invariant Hartogs Domains
70(4)
Exercises
74(1)
6 Relatives
75(8)
6.1 Relatives Complex Space Forms
75(3)
6.2 Homogeneous Kahler Manifolds Are Not Relative to Projective Ones
78(2)
6.3 Bergman--Hartogs Domains Are Not Relative to a Projective Kahler Manifold
80(2)
Exercises
82(1)
7 Further Examples and Open Problems
83(12)
7.1 The Cigar Metric on C
83(6)
7.2 Calabi's Complete and Not Locally Homogeneous Metric
89(3)
7.3 The Taub-NUT Metric on C2
92(1)
Exercises
93(2)
References 95(4)
Index 99