|
|
1 | (18) |
|
1.1 Matrix and Determinant Preliminaries |
|
|
1 | (7) |
|
1.2 Probability Preliminaries |
|
|
8 | (7) |
|
1.3 Least-Squares Preliminaries |
|
|
15 | (4) |
|
|
17 | (2) |
|
2 Kalman Filter: An Elementary Approach |
|
|
19 | (14) |
|
|
19 | (1) |
|
|
20 | (2) |
|
2.3 Prediction-Correction Formulation |
|
|
22 | (4) |
|
2.4 Kalman Filtering Process |
|
|
26 | (7) |
|
|
27 | (6) |
|
3 Orthogonal Projection and Kalman Filter |
|
|
33 | (18) |
|
3.1 Orthogonality Characterization of Optimal Estimates |
|
|
33 | (2) |
|
3.2 Innovations Sequences |
|
|
35 | (2) |
|
3.3 Minimum Variance Estimates |
|
|
37 | (1) |
|
3.4 Kalman Filtering Equations |
|
|
38 | (5) |
|
|
43 | (8) |
|
|
45 | (6) |
|
4 Correlated System and Measurement Noise Processes |
|
|
51 | (18) |
|
|
51 | (2) |
|
4.2 Optimal Estimate Operators |
|
|
53 | (1) |
|
4.3 Effect on Optimal Estimation with Additional Data |
|
|
54 | (3) |
|
4.4 Derivation of Kalman Filtering Equations |
|
|
57 | (6) |
|
4.5 Real-Time Applications |
|
|
63 | (2) |
|
4.6 Linear Deterministic/Stochastic Systems |
|
|
65 | (4) |
|
|
67 | (2) |
|
|
69 | (12) |
|
|
70 | (1) |
|
|
71 | (2) |
|
5.3 Kalman Filtering Process |
|
|
73 | (3) |
|
|
76 | (1) |
|
5.5 Real-Time Applications |
|
|
76 | (5) |
|
|
78 | (3) |
|
|
81 | (20) |
|
|
82 | (1) |
|
|
83 | (9) |
|
6.3 Geometric Convergence |
|
|
92 | (6) |
|
6.4 Real-Time Applications |
|
|
98 | (3) |
|
|
99 | (2) |
|
7 Sequential and Square-Root Algorithms |
|
|
101 | (14) |
|
|
101 | (6) |
|
7.2 Square-Root Algorithm |
|
|
107 | (3) |
|
7.3 An Algorithm for Real-Time Applications |
|
|
110 | (5) |
|
|
111 | (4) |
|
8 Extended Kalman Filter and System Identification |
|
|
115 | (24) |
|
8.1 Extended Kalman Filter |
|
|
115 | (3) |
|
8.2 Satellite Orbit Estimation |
|
|
118 | (2) |
|
8.3 Adaptive System Identification |
|
|
120 | (3) |
|
8.4 An Example of Constant Parameter Identification |
|
|
123 | (2) |
|
8.5 Modified Extended Kalman Filter |
|
|
125 | (6) |
|
8.6 Time-Varying Parameter Identification |
|
|
131 | (8) |
|
|
135 | (4) |
|
9 Decoupling of Filtering Equations |
|
|
139 | (12) |
|
|
139 | (3) |
|
|
142 | (2) |
|
9.3 The α -- β -- γ Tracker |
|
|
144 | (3) |
|
|
147 | (4) |
|
|
148 | (3) |
|
10 Kalman Filtering for Interval Systems |
|
|
151 | (20) |
|
10.1 Interval Mathematics |
|
|
152 | (9) |
|
10.1.1 Intervals and Their Properties |
|
|
152 | (1) |
|
10.1.2 Interval Arithmetic |
|
|
153 | (4) |
|
10.1.3 Rational Interval Functions |
|
|
157 | (2) |
|
10.1.4 Interval Expectation and Variance |
|
|
159 | (2) |
|
10.2 Interval Kalman Filtering |
|
|
161 | (6) |
|
10.2.1 The Interval Kalman Filtering Scheme |
|
|
162 | (1) |
|
10.2.2 Suboptimal Interval Kalman Filter |
|
|
163 | (2) |
|
10.2.3 An Example of Target Tacking |
|
|
165 | (2) |
|
10.3 Weighted-Average Interval Kalman Filtering |
|
|
167 | (4) |
|
|
168 | (3) |
|
11 Wavelet Kalman Filtering |
|
|
171 | (14) |
|
11.1 Wavelet Preliminaries |
|
|
171 | (6) |
|
11.1.1 Wavelet Fundamentals |
|
|
172 | (2) |
|
11.1.2 Discrete Wavelet Transform and Filter Banks |
|
|
174 | (3) |
|
11.2 Singal Estimation and Decomposition |
|
|
177 | (8) |
|
11.2.1 Estimation and Decomposition of Random Signals |
|
|
177 | (4) |
|
11.2.2 An Example of Random Walk |
|
|
181 | (1) |
|
|
182 | (3) |
|
12 Distributed Estimation on Sensor Networks |
|
|
185 | (12) |
|
|
185 | (1) |
|
|
186 | (4) |
|
12.3 Algorithm Convergence |
|
|
190 | (4) |
|
12.4 A Simulation Example |
|
|
194 | (3) |
|
|
195 | (2) |
|
|
197 | (16) |
|
|
197 | (2) |
|
13.2 The α -- β -- γ -- θ Tracker |
|
|
199 | (3) |
|
13.3 Adaptive Kalman Filtering |
|
|
202 | (1) |
|
13.4 Adaptive Kalman Filtering Approach to Wiener Filtering |
|
|
203 | (1) |
|
13.5 The Kalman--Bucy Filter |
|
|
204 | (1) |
|
13.6 Stochastic Optimal Control |
|
|
205 | (1) |
|
13.7 Square-Root Filtering and Systolic Array Implementation |
|
|
206 | (7) |
|
|
209 | (4) |
Answers and Hints to Exercises |
|
213 | (32) |
Index |
|
245 | |