Muutke küpsiste eelistusi

E-raamat: Kalman Filtering: with Real-Time Applications

  • Formaat: EPUB+DRM
  • Ilmumisaeg: 21-Mar-2017
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319476124
  • Formaat - EPUB+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 21-Mar-2017
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319476124

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This new edition presents a thorough discussion of the mathematical theory and computational schemes of Kalman filtering. The filtering algorithms are derived via different approaches, including a direct method consisting of a series of elementary steps, and an indirect method based on innovation projection. Other topics include Kalman filtering for systems with correlated noise or colored noise, limiting Kalman filtering for time-invariant systems, extended Kalman filtering for nonlinear systems, interval Kalman filtering for uncertain systems, and wavelet Kalman filtering for multiresolution analysis of random signals. Most filtering algorithms are illustrated by using simplified radar tracking examples. The style of the book is informal, and the mathematics is elementary but rigorous. The text is self-contained, suitable for self-study, and accessible to all readers with a minimum knowledge of linear algebra, probability theory, and system engineering. Over 100 exercises and pr

oblems with solutions help deepen the knowledge. This new edition has a new chapter on filtering communication networks and data processing, together with new exercises and new real-time applications.

Preliminaries.- Kalman Filter: An Elementary Approach.- Orthogonal Projection and Kalman Filter.- Correlated System and Measurement Noise Processes.- Colored Noise.- Limiting Kalman Filter.- Sequential and Square-Root Algorithms.- Extended Kalman Filter and System Identification.- Decoupling of Filtering Equations.- Kalman Filtering for Interval Systems.- Wavelet Kalman Filtering.- Distributed Estimation on Sensor Networks.- Notes.- Answers and Hints to Exercises.

Arvustused

This book is suitable for self-study as well as for use in a one-quarter or one-semester introductory course on Kalman filtering theory for upper-division undergraduate or first-year graduate to applied mathematics or engineering students. (Mikhail P. Moklyachuk, zbMath 1416.93001, 2019) Kalman filtering (KF) is a wide class of algorithms designed, in words selected from this outstanding book, to obtain an optimal estimate of the state of a system from information in the presence of noise. It is also written to serve as a reference for engineers . The book has my highest recommendation, and it will reward readers for careful and iterative study of its text and well-designed exercises. (Computing Reviews, October, 2017)

1 Preliminaries
1(18)
1.1 Matrix and Determinant Preliminaries
1(7)
1.2 Probability Preliminaries
8(7)
1.3 Least-Squares Preliminaries
15(4)
Exercises
17(2)
2 Kalman Filter: An Elementary Approach
19(14)
2.1 The Model
19(1)
2.2 Optimality Criterion
20(2)
2.3 Prediction-Correction Formulation
22(4)
2.4 Kalman Filtering Process
26(7)
Exercises
27(6)
3 Orthogonal Projection and Kalman Filter
33(18)
3.1 Orthogonality Characterization of Optimal Estimates
33(2)
3.2 Innovations Sequences
35(2)
3.3 Minimum Variance Estimates
37(1)
3.4 Kalman Filtering Equations
38(5)
3.5 Real-Time Tracking
43(8)
Exercises
45(6)
4 Correlated System and Measurement Noise Processes
51(18)
4.1 The Affine Model
51(2)
4.2 Optimal Estimate Operators
53(1)
4.3 Effect on Optimal Estimation with Additional Data
54(3)
4.4 Derivation of Kalman Filtering Equations
57(6)
4.5 Real-Time Applications
63(2)
4.6 Linear Deterministic/Stochastic Systems
65(4)
Exercises
67(2)
5 Colored Noise Setting
69(12)
5.1 Outline of Procedure
70(1)
5.2 Error Estimates
71(2)
5.3 Kalman Filtering Process
73(3)
5.4 White System Noise
76(1)
5.5 Real-Time Applications
76(5)
Exercises
78(3)
6 Limiting Kalman Filter
81(20)
6.1 Outline of Procedure
82(1)
6.2 Preliminary Results
83(9)
6.3 Geometric Convergence
92(6)
6.4 Real-Time Applications
98(3)
Exercises
99(2)
7 Sequential and Square-Root Algorithms
101(14)
7.1 Sequential Algorithm
101(6)
7.2 Square-Root Algorithm
107(3)
7.3 An Algorithm for Real-Time Applications
110(5)
Exercises
111(4)
8 Extended Kalman Filter and System Identification
115(24)
8.1 Extended Kalman Filter
115(3)
8.2 Satellite Orbit Estimation
118(2)
8.3 Adaptive System Identification
120(3)
8.4 An Example of Constant Parameter Identification
123(2)
8.5 Modified Extended Kalman Filter
125(6)
8.6 Time-Varying Parameter Identification
131(8)
Exercises
135(4)
9 Decoupling of Filtering Equations
139(12)
9.1 Decoupling Formulas
139(3)
9.2 Real-Time Tracking
142(2)
9.3 The α -- β -- γ Tracker
144(3)
9.4 An Example
147(4)
Exercises
148(3)
10 Kalman Filtering for Interval Systems
151(20)
10.1 Interval Mathematics
152(9)
10.1.1 Intervals and Their Properties
152(1)
10.1.2 Interval Arithmetic
153(4)
10.1.3 Rational Interval Functions
157(2)
10.1.4 Interval Expectation and Variance
159(2)
10.2 Interval Kalman Filtering
161(6)
10.2.1 The Interval Kalman Filtering Scheme
162(1)
10.2.2 Suboptimal Interval Kalman Filter
163(2)
10.2.3 An Example of Target Tacking
165(2)
10.3 Weighted-Average Interval Kalman Filtering
167(4)
Exercises
168(3)
11 Wavelet Kalman Filtering
171(14)
11.1 Wavelet Preliminaries
171(6)
11.1.1 Wavelet Fundamentals
172(2)
11.1.2 Discrete Wavelet Transform and Filter Banks
174(3)
11.2 Singal Estimation and Decomposition
177(8)
11.2.1 Estimation and Decomposition of Random Signals
177(4)
11.2.2 An Example of Random Walk
181(1)
Exercises
182(3)
12 Distributed Estimation on Sensor Networks
185(12)
12.1 Background
185(1)
12.2 Problem Description
186(4)
12.3 Algorithm Convergence
190(4)
12.4 A Simulation Example
194(3)
Exercises
195(2)
13 Notes
197(16)
13.1 The Kalman Smoother
197(2)
13.2 The α -- β -- γ -- θ Tracker
199(3)
13.3 Adaptive Kalman Filtering
202(1)
13.4 Adaptive Kalman Filtering Approach to Wiener Filtering
203(1)
13.5 The Kalman--Bucy Filter
204(1)
13.6 Stochastic Optimal Control
205(1)
13.7 Square-Root Filtering and Systolic Array Implementation
206(7)
References
209(4)
Answers and Hints to Exercises 213(32)
Index 245
Prof. Dr. Charles K. Chui, Stanford University, Stanford, CA, USA

Prof. Dr. Guanrong Chen, City Univesity Hong Kong, Kowloon, Hong Kong, PR China