Preface |
|
vii | |
|
|
xv | |
|
|
1 | (16) |
|
1.1 Part I - Elementary Theory |
|
|
2 | (3) |
|
|
2 | (1) |
|
1.1.2 Separation of Variables and Action-Angle Variables |
|
|
3 | (1) |
|
1.1.3 Quantization of the Kepler Problem |
|
|
4 | (1) |
|
1.1.4 Regularization and Symmetry |
|
|
5 | (1) |
|
1.2 Part II - Group-Geometric Theory |
|
|
5 | (6) |
|
1.2.1 Conformal Regularization |
|
|
5 | (2) |
|
1.2.2 Spinorial Regularization |
|
|
7 | (1) |
|
1.2.3 Return to Separation of Variables |
|
|
8 | (1) |
|
1.2.4 Geometric Quantization |
|
|
9 | (1) |
|
1.2.5 Kepler Problem with a Magnetic Monopole |
|
|
10 | (1) |
|
1.3 Part III - Perturbation Theory |
|
|
11 | (3) |
|
1.3.1 General Perturbation Theory |
|
|
11 | (1) |
|
1.3.2 Perturbations of the Kepler Problem |
|
|
12 | (1) |
|
1.3.3 Perturbations with Axial Symmetry |
|
|
13 | (1) |
|
|
14 | (3) |
|
1.4.1 Differential Geometry |
|
|
14 | (1) |
|
1.4.2 Lie Groups and Lie Algebras |
|
|
15 | (1) |
|
1.4.3 Lagrangian Dynamics |
|
|
15 | (1) |
|
1.4.4 Hamiltonian Dynamics |
|
|
16 | (1) |
|
|
17 | (92) |
|
|
18 | (18) |
|
|
18 | (4) |
|
2.2 Properties of the Keplerian Motion |
|
|
22 | (5) |
|
|
23 | (2) |
|
|
25 | (1) |
|
|
26 | (1) |
|
|
27 | (2) |
|
|
27 | (1) |
|
|
27 | (1) |
|
|
28 | (1) |
|
2.4 The Elements of the Orbit for H < 0 |
|
|
29 | (3) |
|
2.5 The Repulsive Potential |
|
|
32 | (4) |
|
|
|
|
34 | (2) |
|
3 Separation of Variables and Action--Angle Coordinates |
|
|
36 | (25) |
|
3.1 Separation of Variables |
|
|
37 | (7) |
|
3.1.1 Spherical Coordinates |
|
|
37 | (1) |
|
3.1.2 Parabolic Coordinates |
|
|
38 | (2) |
|
3.1.3 Elliptic Coordinates |
|
|
40 | (2) |
|
3.1.4 Spheroconical Coordinates |
|
|
42 | (2) |
|
3.2 Action--Angle Variables |
|
|
44 | (17) |
|
3.2.1 Delaunay and Poincare Variables |
|
|
44 | (11) |
|
|
55 | (4) |
|
|
59 | (2) |
|
4 Quantization of the Kepler Problem |
|
|
61 | (35) |
|
4.1 The Schrodinger Quantization |
|
|
61 | (17) |
|
4.1.1 Spherical Coordinates |
|
|
66 | (5) |
|
4.1.2 Parabolic Coordinates |
|
|
71 | (2) |
|
4.1.3 Elliptic Coordinates |
|
|
73 | (2) |
|
4.1.4 Spheroconical Coordinates |
|
|
75 | (3) |
|
|
78 | (3) |
|
4.2.1 Canonical Quantization |
|
|
78 | (2) |
|
|
80 | (1) |
|
|
81 | (15) |
|
|
|
|
87 | (1) |
|
4.A.1 Second Order Linear Differential Equations |
|
|
87 | (2) |
|
4.A.2 Laplacian on the Sphere and Homogeneous Harmonic Polynomials |
|
|
89 | (3) |
|
4.A.3 Associated Legendre Functions |
|
|
92 | (1) |
|
4.A.4 Generalized Laguerre Polynomials |
|
|
93 | (1) |
|
4.A.5 Surface Measure on the Sphere and Gamma Function |
|
|
94 | (1) |
|
4.A.6 Green Function of the Laplacian |
|
|
95 | (1) |
|
5 Regularization and Symmetry |
|
|
96 | (13) |
|
|
97 | (5) |
|
|
102 | (3) |
|
|
104 | (1) |
|
5.2.2 Bacry--Gyorgyi Parameters |
|
|
105 | (1) |
|
5.3 Kustaanheimo--Stiefel Transformation |
|
|
105 | (4) |
|
II Group--Geometric Theory |
|
|
109 | (126) |
|
6 Conformal Regularization |
|
|
110 | (33) |
|
|
111 | (4) |
|
6.2 The Compactified Minkowski Space |
|
|
115 | (4) |
|
6.3 The Cotangent Bundle to Minkowski Space |
|
|
119 | (10) |
|
6.4 Regularization of the Kepler Problem |
|
|
129 | (14) |
|
7 Spinorial Regularization |
|
|
143 | (18) |
|
7.1 The Homomorphism SU(2, 2) → SO(2, 4) |
|
|
143 | (7) |
|
7.1.1 Two Bases for su(2, 2) |
|
|
145 | (2) |
|
7.1.2 SU(2, 2) and Compactified Minkowski Space |
|
|
147 | (3) |
|
7.2 Return to the Kustaanheimo--Stiefel Map |
|
|
150 | (6) |
|
7.3 Generalized Kustaanheimo--Stiefel Map |
|
|
156 | (5) |
|
8 Return to Separation of Variables |
|
|
161 | (31) |
|
8.1 Separable Orthogonal Systems |
|
|
161 | (9) |
|
|
162 | (2) |
|
|
164 | (5) |
|
|
169 | (1) |
|
8.2 Finding Coordinate Systems Separating Kepler Problem |
|
|
170 | (7) |
|
8.2.1 Spherical Coordinates |
|
|
173 | (1) |
|
8.2.2 Parabolic Coordinates |
|
|
173 | (2) |
|
8.2.3 Elliptic Coordinates |
|
|
175 | (1) |
|
8.2.4 Spheroconical Coordinates |
|
|
176 | (1) |
|
8.3 Integrable Perturbations |
|
|
177 | (15) |
|
|
179 | (10) |
|
|
189 | (1) |
|
|
|
8.A Jacobian Elliptic Functions |
|
|
190 | (2) |
|
|
192 | (19) |
|
9.1 Multiplier Representations |
|
|
194 | (3) |
|
9.2 Quantization of Geodesies on the Sphere |
|
|
197 | (8) |
|
9.3 Quantization of the Kepler Problem |
|
|
205 | (6) |
|
10 Kepler Problem with Magnetic Monopole |
|
|
211 | (24) |
|
10.1 Nonnull Twistors and Magnetic Monopoles |
|
|
212 | (13) |
|
|
219 | (3) |
|
|
222 | (1) |
|
|
223 | (2) |
|
|
225 | (3) |
|
|
228 | (4) |
|
|
232 | (3) |
|
|
235 | (86) |
|
11 General Perturbation Theory |
|
|
236 | (32) |
|
|
237 | (8) |
|
11.1.1 Lie Series and Formal Canonical Transformations |
|
|
237 | (5) |
|
11.1.2 Homological Equation and its Formal Solution |
|
|
242 | (3) |
|
11.2 The Convergence Problem |
|
|
245 | (23) |
|
11.2.1 Convergence of Lie Series |
|
|
247 | (2) |
|
11.2.2 Homological Equation and its Solution |
|
|
249 | (4) |
|
11.2.3 Kolmogorov Theorem |
|
|
253 | (9) |
|
11.2.4 Nekhoroshev Theorem |
|
|
262 | (2) |
|
|
|
11.A Results from Diophantine Theory |
|
|
264 | (1) |
|
|
265 | (3) |
|
12 Perturbations of the Kepler Problem |
|
|
268 | (25) |
|
12.1 A More Convenient Hamiltonian |
|
|
270 | (6) |
|
12.2 Normalization (or Averaging) Method |
|
|
276 | (8) |
|
12.3 Numerical Integration |
|
|
284 | (9) |
|
12.3.1 Symbolic Manipulation |
|
|
285 | (3) |
|
12.3.2 Compiling Equations |
|
|
288 | (3) |
|
|
|
12.A Variation of the Constants |
|
|
291 | (1) |
|
12.B The Stabilization Method |
|
|
291 | (2) |
|
13 Perturbations with Axial Symmetry |
|
|
293 | (28) |
|
13.1 Reduction of Orbit Manifold |
|
|
293 | (9) |
|
|
302 | (9) |
|
13.3 Stark and Quadratic Zeeman Effect |
|
|
311 | (2) |
|
13.4 Satellite around Oblate Primary |
|
|
313 | (8) |
|
|
321 | (1) |
|
|
322 | (40) |
|
A.1 Rudiments of Topology |
|
|
322 | (2) |
|
A.2 Differentiable Manifolds |
|
|
324 | (7) |
|
|
324 | (3) |
|
A.2.2 Tangent and Cotangent Spaces |
|
|
327 | (2) |
|
A.2.3 Push--forward and Pull--back |
|
|
329 | (2) |
|
|
331 | (10) |
|
|
331 | (1) |
|
A.3.2 Forms and Exterior Derivatives |
|
|
332 | (3) |
|
|
335 | (2) |
|
A.3.4 Integration of Differential Forms |
|
|
337 | (4) |
|
A.4 Distributions and Frobenius Theorem |
|
|
341 | (3) |
|
A.5 Riemannian, Symplectic and Poisson Manifolds |
|
|
344 | (10) |
|
A.5.1 Riemannian Manifolds |
|
|
344 | (4) |
|
A.5.2 Symplectic Manifolds |
|
|
348 | (4) |
|
|
352 | (2) |
|
|
354 | (8) |
|
|
354 | (3) |
|
A.6.2 Principal and Associated Fibre Bundles |
|
|
357 | (5) |
|
B Lie Groups and Lie Algebras |
|
|
362 | (16) |
|
B.1 Definition and Properties |
|
|
362 | (4) |
|
B.2 Adjoint and Coadjoint Representation |
|
|
366 | (3) |
|
B.3 Action of a Lie Group on a Manifold |
|
|
369 | (3) |
|
B.4 Classification of Lie Groups and Lie Algebras |
|
|
372 | (3) |
|
B.5 Connection on a Principal Bundle |
|
|
375 | (3) |
|
|
378 | (10) |
|
|
378 | (4) |
|
|
382 | (1) |
|
|
383 | (1) |
|
C.4 Reduced Lagrangian and Maupertuis Principle |
|
|
384 | (4) |
|
|
388 | (35) |
|
D.1 From Lagrange to Hamilton |
|
|
388 | (2) |
|
D.2 The Hamilton--Jacobi Integration Method |
|
|
390 | (8) |
|
D.2.1 Canonical Transformations |
|
|
390 | (2) |
|
D.2.2 Hamilton--Jacobi Equation |
|
|
392 | (1) |
|
D.2.3 Geometric Description |
|
|
393 | (4) |
|
D.2.4 The Time--dependent Case |
|
|
397 | (1) |
|
D.3 Symmetries and Reduction |
|
|
398 | (10) |
|
|
399 | (3) |
|
D.3.2 Reduction of Symplectic Manifolds |
|
|
402 | (2) |
|
D.3.3 Reduction of Poisson Manifolds |
|
|
404 | (4) |
|
D.4 Action--Angle Variables |
|
|
408 | (15) |
|
|
409 | (7) |
|
|
416 | (1) |
|
|
417 | (6) |
Bibliography |
|
423 | (10) |
Index |
|
433 | |