Muutke küpsiste eelistusi

E-raamat: Kernel Methods for Pattern Analysis

(University of Southampton), (University of California, Davis)
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 28-Jun-2004
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781139636940
  • Formaat - EPUB+DRM
  • Hind: 107,43 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 28-Jun-2004
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781139636940

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Kernel methods provide a powerful and unified framework for pattern discovery, motivating algorithms that can act on general types of data (e.g. strings, vectors or text) and look for general types of relations (e.g. rankings, classifications, regressions, clusters). The application areas range from neural networks and pattern recognition to machine learning and data mining. This book, developed from lectures and tutorials, fulfils two major roles: firstly it provides practitioners with a large toolkit of algorithms, kernels and solutions ready to use for standard pattern discovery problems in fields such as bioinformatics, text analysis, image analysis. Secondly it provides an easy introduction for students and researchers to the growing field of kernel-based pattern analysis, demonstrating with examples how to handcraft an algorithm or a kernel for a new specific application, and covering all the necessary conceptual and mathematical tools to do so.

Arvustused

'Kernel methods form an important aspect of modern pattern analysis, and this book gives a lively and timely account of such methods. if you want to get a good idea of the current research in this field, this book cannot be ignored.' SIAM Review ' the book provides an excellent overview of this growing field. I highly recommend it to those who are interested in pattern analysis and machine learning, and especailly to those who want to apply kernel-based methods to text analysis and bioinformatics problems.' Computing Reviews ' I enjoyed reading this book and am happy about is addition to my library as it is a valuable practitioner's reference. I especially liked the presentation of kernel-based pattern analysis algorithms in terse mathematical steps clearly identifying input data, output data, and steps of the process. The accompanying Matlab code or pseudocode is al extremely useful.' IAPR Newsletter

Muu info

A unique account of developing topic in data mining and machine learning.
Preface
Part I. Basic Concepts:
1. Pattern analysis
2. Kernel methods: an overview
3. Properties of kernels
4. Detecting stable patterns
Part II. Pattern Analysis Algorithms:
5. Elementary algorithms in feature space
6. Pattern analysis using eigen-decompositions
7. Pattern analysis using convex optimisation
8. Ranking, clustering and data visualisation
Part III. Constructing Kernels:
9. Basic kernels and kernel types
10. Kernels for text
11. Kernels for structured data: strings, trees, etc.
12. Kernels from generative models
Part IV. Appendices
Appendix A. Proof omitted from the main text
Appendix B. Notational conventions
Appendix C. List of pattern analysis methods
Appendix D. List of kernels
Bibliography
Index.


fm.author_biographical_note1 fm.author_biographical_note2