Muutke küpsiste eelistusi

E-raamat: Knowledge Discovery in Big Data from Astronomy and Earth Observation: Astrogeoinformatics

Edited by (Stellar Department, Astronomical Institute CAS, Czech Republic), Edited by (Deutsches Zentrum für Luft- und Raumfahrt (DLR) German Aerospace Center Earth Observation Center, German Remote Sensing Data Center, Land Surface Oberpfaffenhofen, German)
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 10-Apr-2020
  • Kirjastus: Elsevier Science Publishing Co Inc
  • Keel: eng
  • ISBN-13: 9780128191552
  • Formaat - EPUB+DRM
  • Hind: 125,51 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 10-Apr-2020
  • Kirjastus: Elsevier Science Publishing Co Inc
  • Keel: eng
  • ISBN-13: 9780128191552

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Knowledge Discovery in Big Data from Astronomy and Earth Observation: Astrogeoinformatics bridges the gap between astronomy and geoscience in the context of applications, techniques and key principles of big data. Machine learning and parallel computing are increasingly becoming cross-disciplinary as the phenomena of Big Data is becoming common place. This book provides insight into the common workflows and data science tools used for big data in astronomy and geoscience. After establishing similarity in data gathering, pre-processing and handling, the data science aspects are illustrated in the context of both fields. Software, hardware and algorithms of big data are addressed.

Finally, the book offers insight into the emerging science which combines data and expertise from both fields in studying the effect of cosmos on the earth and its inhabitants.

  • Addresses both astronomy and geosciences in parallel, from a big data perspective
  • Includes introductory information, key principles, applications and the latest techniques
  • Well-supported by computing and information science-oriented chapters to introduce the necessary knowledge in these fields
List Of Contributors
vii
A Word From The Big-Sky-Earth Chair xi
Preface xiii
Acknowledgments xvii
PART I DATA
1 Methodologies for Knowledge Discovery Processes in Context of AstroGeolnformatics
7(20)
Peter Butka
Peter Bednar
Juliana Ivancakova
2 Historical Background of Big Data in Astro and Geo Context
27(10)
Christian Muller
PART II INFORMATION
3 AstroGeoInformatics: From Data Acquisition to Further Application
37(2)
Bianca Schoen-Phelan
4 Synergy in Astronomy and Geosciences
39(18)
Mikhail Minin
Angelo Pio Rossi
5 Surveys, Catalogues, Databases, and Archives of Astronomical Data
57(46)
Irina Vavilova
Ludmila Pakuliak
Lurii Babyk
Andrii Elyiv
Daria Dobrycheva
Olga Melnyk
6 Surveys, Catalogues, Databases/Archives, and State-of-the-Art Methods for Geoscience Data Processing
103
Lachezar Filchev
Lyubka Pashova
Vasil Kolev
Stuart Frye
7 High-Performance Techniques for Big Data Processing
137(22)
Philipp Neumann
Julian Kunkel
8 Query Processing and Access Methods for Big Astro and Geo Databases
159(14)
Karine Zeitouni
Mariem Brahem
Laurent Yeh
Atanas Hristov
9 Real-Time Stream Processing in Astronomy
173(10)
Veljko Vujcic
Darko Jevremovic
PART III KNOWLEDGE
10 Time Series
183(14)
Ashish Mahabal
11 Advanced Time Series Analysis of Generally Irregularly Spaced Signals: Beyond the Oversimplified Methods
197(28)
Ivan L. Andronov
12 Learning in Big Data: Introduction to Machine Learning
225(26)
Khadija El Bouchefry
Rafael S. de Souza
13 Deep Learning -- an Opportunity and a Challenge for Geo- and Astrophysics
251(16)
Christian Reimers
Christian Requena-Mesa
14 Astro- and Geoinformatics -- visually Guided Classification of Time Series Data
267(16)
Roman Kern
Tarek Al-Ubaidi
Vedran Sabol
Sarah Krebs
Maxim Khodachenko
Manuel Scherf
15 When Evolutionary Computing Meets Astro- and Geoinformatics
283(24)
Zaineb Chelly Dagdia
Miroslav Mirchev
PART IV WISDOM
16 Multiwavelength Extragalactic Surveys: Examples of Data Mining
307(18)
Irina Vavilova
Daria Dobrycheva
Maksym Vasylenko
Andrii Elyiv
Olga Melnyk
17 Applications of Big Data in Astronomy and Geosciences: Algorithms for Photographic Images Processing and Error Elimination
325(6)
Ludmila Pakuliak
Vitaly Andruk
18 Big Astronomical Datasets and Discovery of New Celestial Bodies in the Solar System in Automated Mode by the CoLiTec Software
331(16)
Sergii Khlamov
Vadym Savanevych
19 Big Data for the Magnetic Field Variations in Solar-Terrestrial Physics and Their Wavelet Analysis
347(24)
Bozhidar Srebrov
Ognyan Kounchev
Georgi Simeonov
20 International Database of Neutron Monitor Measurements: Development and Applications
371(14)
D. Sapundjiev
T. Verhulst
S. Stankov
21 Monitoring the Earth Ionosphere by Listening to GPS Satellites
385(20)
Liubov Yankiv-Vitkovska
Stepan Savchuk
22 Exploitation of Big Real-Time GNSS Databases for Weather Prediction
405(14)
Nataliya Kablak
Stepan Savchuk
23 Application of Databases Collected in Ionospheric Observations by VLF/LF Radio Signals
419(16)
Aleksandra Nina
24 Influence on Life Applications of a Federated Astro-Geo Database
435(10)
Christian Muller
Index 445
Petr koda has been involved in astroinformatics and has a long-term experience in using and lecturing the astronomical Virtual observatory. One of the proposers of COST BigSkyEarth Action and its MC member. BigSkyEarth is the working group behind the idea of the book and a conference about the same topic. Fathalrahman Adam has good understanding of classical machine learning and new concepts, along with hands-on experience and published papers. He is involved in large scale applications using satellite data for earth observation, mainly multi-spectral data. He is a member of BigSkyEarth COST Action.