Muutke küpsiste eelistusi

E-raamat: Knowledge Science, Engineering and Management: 17th International Conference, KSEM 2024, Birmingham, UK, August 16-18, 2024, Proceedings, Part II

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat - PDF+DRM
  • Hind: 246,99 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The five-volume set LNCS 14884, 14885, 14886, 14887 & 14888 constitutes the refereed deadline proceedings of the 17th International Conference on Knowledge Science, Engineering and Management, KSEM 2024, held in Birmingham, UK, during August 1618, 2024.





The 160 full papers presented in these proceedings were carefully reviewed and selected from 495 submissions. The papers are organized in the following topical sections:





Volume I: Knowledge Science with Learning and AI (KSLA)





Volume II: Knowledge Engineering Research and Applications (KERA)





Volume III: Knowledge Management with Optimization and Security (KMOS)





Volume IV: Emerging Technology





Volume V: Special Tracks
.- Knowledge Engineering Research and Applications (KERA).



.- Research on Node Cluster Analysis in Brain Connection Data.



.- A New Emotion Classification Method Based on JAN-VMD.



.- Neuro-Genetic System: A Hybrid System of CNN-BiLSTM Optimized by Genetic
Algorithm for Road Accident Severity Prediction.



.- MoveFormer: Spatial Graph Periodic Injection Network for Next POI
Recommendation.



.- Bio-Inspired Feature Selection via An Improved Binary Golden Jackal
Optimization Algorithm.



.- Dynamic Reliability-optimised and Energy-efficient Scheduling Algorithms
in Heterogeneous Multi-core Systems.



.- A Human-Computer Negotiation Model Based on Sentiment Analysis and Big
Data.



.- A novel online sequential learning algorithm for ELM based on optimal
control.



.- DICES: Diffusion-Based Contrastive Learning with Knowledge Graphs for
Recommendation.



.- Variational Loss of Random Sampling for Searching Cluster Number.



.- DVDNER: Dual-view Learning Named Entity Recognition via Diffusion.



.- Achieving Universal Fairness in Machine Learning: A Multi-objective
Optimization Perspective.



.- SSNF: Optimizing Entity Alignment with a Novel Structural and Semantic
Neighbor Filtering.



.- Visual Analytics of Learning Behavior Based on the Dendritic Neuron
Model.



.- Feature Matching Based Heterogeneous Transfer Learn-ing for Student
Performance Prediction.



.- Weighted Multiple Source-Free Domain Adaptation Ensemble Network in
Intelligent Machinery Fault Diagnosis.



.- Logarithm of Maximum Posterior Evidence: Advanced Model Selection for Text
Classification.



.- A Hybrid Method Combing Reinforcement Learning and Heuristics in Solving
Two-Echelon Vehicle Routing Problem with Backhauls.



.- AgriBERT: A Joint Entity Relation Extraction Model Based on Agricultural
Text.



.- Research on Key Node Cluster Identification Algorithm based on Louvain and
Cycle Ratio.



.- Uncertain $k$ center Clustering, Revisited: Point Assignment.



.- DPSPC: A Density Peak-based Statistical Parallel Clustering Algorithm for
Big Data.



.- Insert Commonsense Knowledge through Semantics for Dialogue Generation.



.- Entity Set Expansion based on Category Prompts in MOOCs.



.- ViT Hybrid Channel Fit Pruning Algorithm for Co-Optimization of Hardware
and Software for Edge Device.



.- Collaborative Adversarial Learning for Unsupervised Federated Domain
Adaptation.



.- Improving Image Captioning with Image Concepts of Words.



.- M HGN: Multi information Enhanced Heterogeneous Graph Network for
Multi-party Dialogue Reading Comprehension.



.- A Student Performance Prediction Model Based on Feature Factor Transfer.



.- A Binary Multi-objective Grey Wolf Optimization for Feature Selection.



.- CS Net: A Coarse-to-fine-grained Summarization Network for Community-based
Question Answering Summarization.



.- AutoIE: An Automated Framework for Information Extraction from Scientific
Literature.



.- Adaptive Density Peak Clustering with Optimized Border-peeling.



.- Efficient Affinity Propagation Clustering Based on Szemer´edis Regularity
Lemma.