Muutke küpsiste eelistusi

E-raamat: Knowledge Science, Engineering and Management: 17th International Conference, KSEM 2024, Birmingham, UK, August 16-18, 2024, Proceedings, Part III

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat - EPUB+DRM
  • Hind: 246,99 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The five-volume set LNCS 14884, 14885, 14886, 14887 & 14888 constitutes the refereed deadline proceedings of the 17th International Conference on Knowledge Science, Engineering and Management, KSEM 2024, held in Birmingham, UK, during August 1618, 2024.





The 160 full papers presented in these proceedings were carefully reviewed and selected from 495 submissions. The papers are organized in the following topical sections:





Volume I: Knowledge Science with Learning and AI (KSLA)





Volume II: Knowledge Engineering Research and Applications (KERA)





Volume III: Knowledge Management with Optimization and Security (KMOS)





Volume IV: Emerging Technology





Volume V: Special Tracks
.- Knowledge Management with Optimization and Security (KMOS).



.- Knowledge Enhanced Zero-Shot Visual Relationship Detection.



.- WGGAL: A Practical Time Series Forecasting Framework for Dynamic Cloud
Environments.



.- Dynamic Splitting of Diffusion Models for Multivariate Time Series Anomaly
Detection in A JointCloud Environment.



.- VulCausal: Robust Vulnerability Detection Using Neural Network Models from
a Causal Perspective.



.- LLM-Driven Ontology Learning to Augment Student Performance Analysis in
Higher Education.



.- DA-NAS: Learning Transferable Architecture for Unsupervised Domain
Adaptation.



.- Optimize rule mining based on constraint learning in knowledge graph.



.- GC-DAWMAR: A Global-Local Framework for Long-Term Time Series
Forecasting.



.- An improved YOLOv7 based prohibited item detection model in X-ray images.



.- Invisible Backdoor Attacks on Key Regions Based on Target Neurons in
Self-Supervised Learning.



.- Meta learning based Rumor Detection by Awareness of Social Bot.



.- Financial FAQ Question-Answering System Based on Question Semantic
Similarity.



.- An illegal website family discovery method based on association graph
clustering.



.- Different Attack and Defense Types for AI Cybersecurity.



.-An Improved Ultra-Scalable Spectral Clustering Assessment with Isolation
Kernel.



.- A Belief Evolution Model with Non-Axiomatic Logic.



.- Lurking in the Shadows: Imperceptible Shadow Black-Box Attacks against
Lane Detection Models.



.- Multi-mode Spatial-Temporal Data Modeling with Fully Connected Networks.



.- KEEN: Knowledge Graph-enabled Governance System for Biological Assets.



.- Cop: Continously Pairing of Heterogeneous Wearable Devices based on
Heartbeat.



.- DFDS: Data-Free Dual Substitutes Hard-Label Black-Box Adversarial Attack.



.- Logits Poisoning Attack in Federated Distillation.



.- DiVerFed: Distribution-Aware Vertical Federated Learning for Missing
Information.



.- Prompt Based CVAE Data Augmentation for Few-shot Intention Detection.



.- Reentrancy Vulnerability Detection Based On Improved Attention Mechanism.



.- Knowledge-Driven Backdoor Removal in Deep Neural Networks via
Reinforcement Learning.



.- AI in Healthcare Data Privacy-preserving: Enhanced Trade-off between
Security and Utility.



.- Traj-MergeGAN: A Trajectory Privacy Preservation Model Based on Generative
Adversarial Network.



.- Adversarial examples for Preventing Diffusion Models from Malicious Image
Edition.



.- ReVFed: Representation-based Privacy-preserving Vertical Federated
Learning with Heterogeneous Models.



.- Logit Adjustment with Normalization and Augmentation in Few-shot Named
Entity Recognition.



.- New Indicators and Optimizations for Zero-Shot NAS Based on Feature Maps.