Muutke küpsiste eelistusi

E-raamat: Knowledge Science, Engineering and Management: 17th International Conference, KSEM 2024, Birmingham, UK, August 16-18, 2024, Proceedings, Part IV

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat - EPUB+DRM
  • Hind: 160,54 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The five-volume set LNCS 14884, 14885, 14886, 14887 & 14888 constitutes the refereed deadline proceedings of the 17th International Conference on Knowledge Science, Engineering and Management, KSEM 2024, held in Birmingham, UK, during August 1618, 2024.





The 160 full papers presented in these proceedings were carefully reviewed and selected from 495 submissions. The papers are organized in the following topical sections:





Volume I: Knowledge Science with Learning and AI (KSLA)





Volume II: Knowledge Engineering Research and Applications (KERA)





Volume III: Knowledge Management with Optimization and Security (KMOS)





Volume IV: Emerging Technology





Volume V: Special Tracks
.- Emerging Technology.



.- Integrated geologic terms and dual model for Chinese geological word
segmentation.



.- Random Virtual Embeddings Bootstrap High-degree Item Diffusion for
Recommendation.



.- Contrastive Learning for Money Laundering Detection: Node- Subgraph-Node
Method with Context Aggregation and Enhancement Strategy.



.- GCCR: GAT-Based Category-aware Course Recommendation.



.- Exploring Word Composition Knowledge In Language Usages.



.- L2R-Nav: A Large Language Model-Enhanced Framework for Robotic
Navigation.



.- Adversarial attacks on Large Language Models.

.- Enhancing Question Embedding with Relation Chain for Multi-hop KGQA.



.- IIU: Independent Inference Units for Knowledge-based Visual Question
Answering.



.- Research on Blockchain-Based Trustworthy Data Sharing and Privacy Data
Protection Mechanism.



.- A Hierarchical Neural Task Scheduling Algorithm in The Operating System of
Neuromorphic Computers.



.- Efficient Data Asset Right Provenance for Data Asset Trading Based on
Blockchain.



.- CGCL: A Novel Collaborative Graph Contrastive Learning Network for Chinese
NER.



.- Scalable attack on graph data by important nodes.

.- WaveSegNet: Wavelet Transform and Multi-Scale Focusing Network for Scrap
Steel Segmentation.



.- Recommendation Algorithm Based on Refined Knowledge Graphs and Contrastive
Learning.



.- Enhancing Pet Health Record Security through RSA-Encrypted NFTs and Smart
Contracts on the Blockchain.



.- A Blockchain-Based Secure ADS-B System.



.- An Emotion-Aware Human-Computer Negotiation Model Powered by Pretrained
Language Model.



.- Feature Re-enhanced Meta-Contrastive Learning for Recommendation.

.- ANGCN:Adaptive Neighborhood-awareness for Recommendation.

.- The study of named entity identification in Chinese electronic medical
records based on multi-tasking.



.- A Comparative Study of Different Pre-trained Language Models for Sentiment
Analysis of Human-Computer Negotiation Dialogue.



.- Integrating Blockchain and RSA-Encrypted NFTs for Enhanced Digital
Knowledge Management.



.- An Effective RSP Data Sampling Algorithm.



.- Rationality of Thought Improves Reasoning in Large Language Models.



.- NFTMosaic: Piecing Together Assets in a Unified Blockchain Token.



.- Global Context Enhanced Multi-Granularity Intent Networks for
Session-based Recommendation.



.- Enhancing Electoral Integrity: A Comprehensive Study of Blockchain-Enabled
Voting on EVM Platforms.



.- AutoLabel: Automated Textual Data Annotation Method based on Active
Learning and Large Language Model.



.- KDTSS: A Blockchain-based Scheme for Knowledge Data Traceability and
Secure Sharing.



.- A Joint Client-Server Watermarking Framework for Federated Learning.



.- Robust Representation Learning for Image Clustering.