Muutke küpsiste eelistusi

E-raamat: Languages and Compilers for Parallel Computing: 33rd International Workshop, LCPC 2020, Virtual Event, October 14-16, 2020, Revised Selected Papers

Edited by , Edited by
  • Formaat - PDF+DRM
  • Hind: 67,91 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book constitutes the thoroughly refereed post-conference proceedings of the 33rd International Workshop on Languages and Compilers for Parallel Computing, LCPC 2020, held in Stony Brook, NY, USA, in October 2020. Due to COVID-19 pandemic the conference was held virtually. The 15 revised full papers were carefully reviewed and selected from 19 submissions. The contributions were organized in topical sections named as follows: Code and Data Transformations; OpenMP and Fortran; Domain Specific Compilation; Machine Language and Quantum Computing; Performance Analysis; Code Generation.
Code and Data Transformations An Affine Scheduling Framework for
Integrating Data Layout and Loop Transformations.- Guiding Code Optimizations
with Deep Learning-Based Code Matching.- Expanding Opportunities for Array
Privatization in Sparse Computations.- OpenMP and Fortran Concurrent
Execution of Deferred OpenMP Target Tasks with Hidden Helper Threads.- Using
Hardware Transactional Memory to Implement Speculative Privatization in
OpenMP.- Improving Fortran Performance Portability.- Domain Specific
Compilation COMET: A Domain-Specic Compilation of High-Performance
Computational Chemistry.-  G-Code Re-compilation and Optimization for Faster
3D Printing.- Li Machine Language and Quantum Computing Optimized Code
Generation for Deep Neural Networks.- Thermal-Aware Compilation of Spiking
Neural Networks to Neuromorphic Hardware.- A Quantum-Inspired Model For
Bit-Serial SIMD-Parallel Computation.- Performance Analysis Enhancing the
Top-Down Microarchitectural Analysis Method Using Purchasing Power Parity
Theory.- Code Generation Cain: Automatic Code Generation for Simultaneous
Convolutional Kernels on Focal-plane Sensor-processors.- Reordering Under the
ECMAScript Memory Consistency Model.- Verication of Vectorization of Signal
Transforms.